
NURBS in VRML

Holger Grahn, Thomas Volk, Hans J. Wolters*
blaxxun interactive

*Hewlett Packard Laboratories

ABSTRACT
In the days of VRML 1.0, NURBS seemed to be too complex to
be adapted to the specification. Current development of hardware
compels us to reevaluate this idea: While CPU clocks break the 1-
GHz barrier, users still have to cope with 56K modems. NURBS
meet exactly these demands. A NURBS description is a compact
storage form, but its evaluation requires more computational
effort. In addition, NURBS can be utilized for morphing effects
and they provide a means for a smooth LOD. Adopting trimmed
NURBS allows visualization of complex CAD models in VRML.
This paper gives an overview of the proposed nodes and their
implementation and applications. We take a closer look at LOD,
animations and trimmed NURBS. Finally, we look ahead and
briefly touch on an emerging new representation, subdivision
surfaces.

Keywords: NURBS, trimmed NURBS, parametric surfaces,
subdivision surfaces

1. INTRODUCTION
During the design of VRML 1.0, the specification was closely
aligned with OpenInventor [sgi]. A lot of concepts of Inventor
were adopted in VRML 1.0 and passed on to VRML 2.0.
Nevertheless, the NURBS primitives of Inventor were left out,
because NURBS had been too CPU-intensive at the time and the
description was seen as too complex compared to conventional
primitives. Nowadays the average Internet connection cannot feed
the CPU and the modern graphics subsystems a sufficient amount
of data to keep them busy. That means that the applications are
bandwidth-limited. Hence, adopting NURBS to the VRML
specification seems to be the next logical step in the further
development of Web-based graphics when taking into account the
current development of hardware and infrastructure.

Holger Grahn, holger.grahn@blaxxun.de, blaxxun interactive,
Elsenheimerstr. 61-63, 80687 Munich, Germany.
Hans J. Wolters, wolters@hpl.hp.com, Hewlett Packard
Laboratories, 1501 Page Mill Rd, Palo Alto, CA 94304
Thomas Volk, thomas.volk@blaxxun.de, blaxxun interactive,
Elsenheimerstr. 61-63, 80687 Munich, Germany.

In the first section, we will give a short introduction to NURBS
and trimmed NURBS. A comprehensive description of NURBS
can be found in [PT95] and [Far96]. In the second section, the
proposed nodes are introduced; the complete nodes proposal can
be found at [bla1]. In the third section, we will address
implementation issues. The results of our implementation are
shown in the following section.

NURBS
A point on a NURBS surface is defined by:

u,v parameters of the surface
B basis functions
k orders in u and v direction
V mesh of control points
w weights

The basis functions are defined as follows:

U is the knot vector containing a nondecreasing sequence of real
numbers.

By stepping through the u and v domains and evaluating the
equation for points on the surface, a grid of sample points can be
produced. Triangle strips can be generated by stepping through
the u domain at two fixed v values.

ji
um

i
vm

j vkjuki

ji
um

i
vm

j jivkjuki

wvBuB

VwvBuB
vuQ

,0 0 ,,

,0 0 ,,,

)()(

)()(
),(

∑ ∑

∑ ∑
=

= =

= =

=)(1, uBi {1
0

1+<≤ ii uuu
otherwise

)()()(1,1
1

1,
1

, uB
uu

uu
uB

uu

uu
uB ri

iri

ri
ri

iri

i
ri −+

++

+
−

−+ −
−

+
−

−
=

},...,{ 0 umuuU =

The normals are computed by taking the cross product of the
surface derivatives

and normalizing the resulting vector.

This evaluation scheme is referred to in the literature as uniform
tessellation. This method is staightforward to implement, less
CPU-intensive and suitable for parallel computing. For a fixed
tessellation it is possible to precompute all the necessary basis
functions Bi (u) and Bj(v). In addition, some properties of NURBS
can be exploited. The control points are invariant to
transformations. Thus the small number of control points can be
transformed instead of the huge number of output vertices. The
vertices are lighted in screen space afterwards. Furthermore, the
convex hull property of NURBS states that the surface or curve
lies completely within the convex hull formed by its control
polygon. Hence the control polygon can be used as bounding box
for culling. It is also known that by repeatedly performing
subdividision via knot insertion [Far96] the control polygon
converges quadratically to the surface [Dahmen86]. By exploiting
this fact, we can compute very tight bounding hulls.

As a drawback of a fixed step size the surfaces can be
oversampled or undersampled: a flat surface may be broken up
into a very fine mesh, or a surface of high curvature may be
represented by a coarse mesh. This problem is adressed in the
adaptive subdivision scheme as described in [Pet94]. Adaptive
tessellation approximates the surface more accurately, especially
in cases of highly varying curvature, but is more CPU-intensive.
In our approach, we use a uniform tessellation due to its lesser
computational requirements. If the NURBS surface is
parametrized appropriately, then the placement of the knot lines
reflects the surface properties well. In areas of dense knot lines the
surface will be more complex than in areas with sparse knotlines.
Hence a tessellation formed by dividing knot intervals into a fixed
number of subintervals will sample the surface accurately.

Boundary computation
There is considerable literature on step size computation for
uniform tessellation such as [RHD89], [FMM86], [AES91],
[KML96]. There are two categories of algorithms, the size
criterion and the deviation criterion. The size criterion determines
the bound based on the size of the resulting triangles in screen
space. Applying this step size to uniform tessellation still means
that smooth areas are oversampled because the step size is related
to the maximum curvature. The deviation criterion computes a
bound on the maximum deviation of the tessellated surface from
the NURBS surface. The deviation criterion produces good results
but is computationally expensive.

Cracks
Since adjacent surfaces need not necessarily be tessellated with
the same step size, cracks will appear at the patch boundaries. If
the boundary curve of two surfaces has an identical parametric
representation, a strip of coving triangles can be generated at the
boundary as described in [FMM86, RHD89]. If the control points
of the boundary do not match, boundary curves have to be tested

for intersection to find out if they are identical [KML95].
Especially when rendering trimmed NURBS, the trimming curves
have to be checked. Patches may have different trimming curves
in terms of control points representing the curve.

Trimmed NURBS
To describe arbitrary shapes, we have to introduce trimmed
NURBS patches. Here, so-called trimming loops which are
specified in parameter space of a surface mark invalid regions of
the NURBS patch domain. Especially in the CAD domain,
trimmed NURBS are used to design objects with fluid shapes like
ship hulls and aircraft or car bodies. Also in solid modelling
patches containing holes are represented in trimmed form.
Trimming loops consist of one or more trimming curves, which
are 2D NURBS curves or piecewise linear curves, lying in
parameter space of the surface and forming a closed loop.
Degeneracies like selfintersecting trimming loops and intersecting
loops need special attention, in that they have to be split up into
non intersecting loops.

Two different approaches of tessellating trimmed surfaces can be
found in literature: In [Luk93] and [LC93] the B-Spline
representation is used for rendering. The rendering algorithm
involves the computation of intersections of trimming curves with
the iso-lines and triangulation. Since these operations are simpler
and faster to perform on Bezier-representations than on B-Splines,
algorithms presented in [RHD89], [KML96] and [AES94] first
convert NURBS surfaces to Bezier surfaces. The algorithm in
[RHD89] partitions each trimming curve into monotonic segments
followed by a special triangulation at the patch boundaries. We
share this approach in our implementation which is stable and
straightforward to implement. The monotonic subdivision and the
triangulation may become a bottleneck [RHD89]. More recent
results as [KML96] present more efficient algorithms for the
triangulation, the computation of tight bounds and the exploitation
of frame coherence.

Figure 1: Trimmed NURBS patch rendered with the glu
tessellator.

),(),(vuQ
v

vuQ
u

n
∂
∂

×
∂
∂

=

2. PROPOSED NODES

NurbsSurface
NurbsSurface {

field SFInt32 uDimension 0 # [0, ∞)
field SFInt32 vDimension 0 # [0, ∞)
field MFFloat uKnot [] # (-∞,∞)
field MFFloat vKnot [] # (-∞,∞)
field SFInt32 uOrder 3 # [2, ∞)
field SFInt32 vOrder 3 # [2, ∞)
exposedField MFVec3f controlPoint [] # (-∞,∞)
exposedField MFFloat weight [] # (0, ∞)
exposedField SFInt32 uTessellation 0 # (-∞,∞)
exposedField SFInt32 vTessellation 0 # (-∞,∞)
exposedField SFNode texCoord []
field SFBool ccw TRUE
field SFBool solid TRUE
}

uDimension and vDimension define the number of control points
in the u and v dimensions.

uOrder and vOrder define the order of surface. From a
mathematical point of view, the surface is defined by polynomials
of the degree order-1. The order of the curves uOrder and vOrder
must be greater than or equal to 2. An implementation may limit
uOrder and vOrder to a certain number. The most common orders
are 3 (quadratic polynomial) and 4 (cubic polynomial), which are
sufficient to achieve the desired curvature in most cases.
The number of control points must be at least equal to the order of
the curve. The order defines the number of adjacent control points
that influence a given control point.

controlPoint defines a set of control points of dimension
uDimension * vDimension. This set of points defines a mesh
similar to the grid of an ElevationGrid, whereas the points do not
have a uniform spacing. Depending on the weight values and the
order, this hull is approximated by the resulting surface. The
number of uDimension points define a polyline in u-direction
followed by further u-polylines with the v-parameter in ascending
order. The number of control points must be equal to or greater
than the order. A closed B-Spline surface can be specified by
repeating the limiting control points and by specifying a periodic
knot vector

The control vertex corresponding to the control point P[i, j] on the
control grid is:

P[i,j].x = controlPoints[i + (j × uDimension)].x
P[i,j].y = controlPoints[i + (j × uDimension)].y
P[i,j].z = controlPoints[i + (j × uDimension)].z
P[i,j].w = weight[i + (j × uDimension)]
where 0 <= i < uDimension and 0 <= j < vDimension.

A weight value that must be greater than zero is assigned to each
controlPoint. The ordering of the values is equivalent to the
ordering of the control point values. If the weight of a control
point increased above 1 the point is more closely approximated by
the surface. However the surface is not changed if all weights are
multiplied by a common factor. The number of values must be
identical to the number of control points. If the length of the
weight vector is 0, the default weight 1.0 is assumed for each
control point.

As a result of the lack of a 4D Coordinate field type in VRML, the
control points and the corresponding weight values are held in
separate fields. This separation also allows independent animation
of the controlPoint fields using a CoordinateInterpolator node.
uKnots and vKnots define the knot vector. The number of knots
must be equal to the number of control points plus the order of the
curve. The order must be non-decreasing. By setting successive
knot values equal, the degree of continuity is decreased, which
implies that the surface gets edges. In general, the curve or surface
is of continuity Ck-1-m at a knot point, where k is the order and m is
the number of consecutive knots being equal. If k is the order of
the curve, k consecutive knots at the end or the beginning of the
vector cause the curve to interpolate the last or the first control
point respectively. Within the knot vector there may not be more
than k-1 consecutive knots of equal value. If the length of a knot
vector is 0, a default uniform knot vector is computed.

uTessellation and vTessellation give hints to the surface
tessellator, u/v Tessellation > = u/v Order sets an absolute number
of subdivision steps, 0 lets the browser choose a suitable
tessellation. Interpretation of values below 0 are implementation-
dependent.

For an implementation subdividing the surface into an equal
number of subdivision steps, tessellation values could be
interpreted in the following way: if a tessellation value is greater
than 0, the number of tessellation points is tessellation+1; if a
tessellation value is smaller than 0, the number of tessellation
points is (-tessellation * (u/v)dimension)+1 if a tessellation value
is 0, the number of tessellation points is (2 * (u/v)dimension)+1
For implementations doing tessellations based on chord length,
tessellation values <0 could be interpreted as the maximum chord
length deviation in pixels. Implementations doing fully automatic
tessellation may ingore the tessellation hint parameters.

texCoord could provide additional information on how to generate
texture coordinates. By default, texture coordinates in the unit
square are generated automatically from the parametric
subdivision. It is under consideration to use a
NurbsTextureSurface Node or simply a TextureCoordinate node
in order to be able to compute a texture coordinate given a u/v
parameter of the NurbsSurface. NurbsTextureSurface would also
allow for non-animated surfaces to specify a chord-length-based
texture coordinate parametrization. Feedback from content
developers is required to resolve this open issue.

ccw and solid are defined like in other VRML Geometry nodes.
solid TRUE enables two-sided lighting, the surface is visible from
both sides, and normals are flipped toward the viewer prior to
shading.

NurbsCurve
NurbsCurve {
field MFFloat knot [] # (-∞,∞)
field SFInt32 order 3 # [2, ∞)
exposedField MFVec3f controlPoint [] # (-∞,∞)
exposedField MFFloat weight [] # (0, ∞)
exposedField SFInt32 tessellation 0 # (-∞,∞)
}

The NurbsCurve node is defined analogous to the NurbsSurface
node. The dimension field is left out, since these fields are only

necessary to resolve the set of the surface control points as a 2
dimensional area.

NurbsGroup
NurbsGroup {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []

field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
field SFVec3f bboxSize -1 -1 -1 # (0,∞)
or -1,-1,-1
exposedField SFFloat tessellationScale 1.0
}

The NurbsGroup node groups a set of NurbsSurface nodes to a
common group. This provides a hint to the browser to treat the set
of NurbsSurface as a unit during tessellation to enforce
tessellation continuity along borders. The tessellationScale
parameter scales the tessellation values in lower-level
NurbsSurface nodes. If a set of NurbsSurfaces uses a matching set
of controlPoints along the borders, this results in a common
tessellation stepping.

NurbsPositionInterpolator
NurbsPositionInterpolator {

 eventIn SFFloat set_fraction
 exposedField SFBool fractionAbsolute TRUE
 exposedField SFInt32 dimension 0
 exposedField MFFloat knot []
 exposedField SFInt32 order 4
 exposedField MFVec3f keyValue []
 exposedField MFFloat keyWeight []
 eventOut SFVec3f value_changed
}

NurbsPositionInterpolator describes a 3D NURBS Curve using
dimension keyValue, keyWeight, knot and order. Sending a
set_fraction input computes a 3D position on the curve, which is
sent by value_changed. The set_fraction value is used as the input
value for the tessellation function. Thereby the knot coresponds to
the key field of a conventional interpolator node, i.e. if the
set_fraction value is within [0;1] and the knot vector within [0;2]
only the half of the curve is computed. To traverse an arbitrary
knot span with the normal input span of [0;1] of a TimeSensor
node a mapping function can be activated by setting the
fractionAbsolute to FALSE.

It is under consideration to expand the functionality to also
compute tangents:

exposedField SFBool computeTangent FALSE
eventOut SFVec3f tangent_changed

The tangent is computed if the computeTangent field is TRUE.
This eventOut can be used to compute a frame of reference at the
current position along the curve.

Using a VRML PositionInterpolator, it is not possible to specify a
smooth movement like a path along a circle until the curve is
sampled to a very fine resolution. In a lot of existing VRML
content, the data for Interpolators make up a substantial portion of
the total size of the VRML file. Using Spline- (NURBS-) based
interpolation, we hope that this amount of data can be reduced.

Feedback from content developers and tool vendors is required to
evaluate this node and its usability and data reduction capabilities.

NurbsTextureSurface
NurbsTextureSurface {
field SFInt32 uDimension 0 # [0, ∞)
field SFInt32 vDimension 0 # [0, ∞)
field MFFloat uKnot [] # (-∞,∞)
field MFFloat vKnot [] # (-∞,∞)
field SFInt32 uOrder 3 # [2, ∞)
field SFInt32 vOrder 3 # [2, ∞)
exposedField MFVec2f controlPoint [] # (-∞,∞)
exposedField MFFloat weight [] # (0, ∞)
}

The NurbsTextureSurface node is a NURBS surface existing in
the parametric domain of its surface host specifying the mapping
of the texture onto the surface. The tessellation process generates
2D texture coordinates, which means additional computational
effort in a frame-by-frame tessellation. If the
NurbsTextureSurface is undefined, texture coordinates are
computed by the client on the basis of parametric step size
without any performance penalty. Conventional vertex parameters
do not apply on NURBS because triangles are only available after
polygonization, but the conventional texture transform may be
used.

TrimmedSurface
TrimmedSurface {
eventIn MFNode addTrimmingContour
eventIn MFNode removeTrimmingContour
exposedField MFNode trimmingContour []
exposedField SFNode surface NULL
}

The TrimmedSurface node defines a NURBS surface that is
trimmed by a set of trimming loops. The surface field contains
the NurbsSurface that shall be trimmed. The trimmingContour
field, if specified, shall contain a set of Contour2D nodes. The
contours specify the area to trim out following the trimming rule
aligned to the Open Inventor definition [Wer94]. A area inside a
loop is discarded if the loop is defined in a clockwise direction. If
the loop is defined in a counterclockwise direction the area inside
is retained and outside is discarded. The outermost contour must
be defined in a counterclockwise direction. The contours may not
be self-intersecting or intersect other contours.

Contour2D
Contour2D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
field SFVec3f bboxSize -1 -1 -1 # (0, ∞)
or -1,-1,-1
}

The Contour2D node groups a set of curve segments to a
composite contour. The children have to form a closed loop with
the first point of the first child repeated as the last point of the last
child and the last point of a segmet repeated as the first point of
the consecutive one. The segments must be of the type

NurbsCurve2D or Polyline2D and must be enumerated in the
child field in consecutive order according to the topology of the
contour.

NurbsCurve2D
NurbsCurve2D {
field MFFloat knot []
field SFInt32 order 3
exposedField MFVec2f controlPoint []
exposedField MFFloat weight []
exposedField SFInt32 tessellation 0
}

The NurbsCurve2D node defines a trimming segment that is part
of a trimming contour in the u-v domain of the surface. If the
NurbsCurve2D forms a closed contour, it may be used as a
Contour2D node.

Polyline2D
Polyline2D {
exposedField MFVec2f point []
}

The Polyline2D node defines a linear curve segment as a part of a
trimming contour in the u-v domain of a surface.

3. IMPLEMENTATION
Our implementation in the VRML browser blaxxun Contact [bla2,
web] proves the usage of NURBS in the VRML domain. All
proposed nodes except the NurbsTextureSurface have been
successfully implemented. In favour of fast and stable processing
a uniform tessellation was applied as recommended in [KML96].
Various rendering pipelines fullfill the requirements of different
platforms (Figure 2). As a reference implementation we used the
OpenGL tessellator located in the glu-library. The NURBS
surface parameters are directly handed over to the corresponding
OpenGL functions. This method is easy to implement, but
performance is low.

To use the built in rendering pipline in our client, we polygonize
NURBS models and store the resulting mesh data. If no dynamic
tessellation is required, the performance penalty is avoided
alltogether. For low-end CPUs or complex models, this method
can be used to tessellate NURBS surfaces in a preprocessing step.
In case of dynamic tessellation (view-depended rendering) the
introduction of thresholds for the tessellation values minimizes the
computational load. If the tessellation value is altered by more
than 10% the vertex cache is flushed and a new tessellation cycle
is invoked.

Current chip architectures like the Intel ISSE or the AMD
3DNow! allow to parallelize the computations involved in the
polygonization. An ISSE optimized tessellation with additionally
optimized lighting and transformation showed best results. This
pipeline exploits the fact that CVs are invariant under
transformations. Transform is sped up by applying the costly
matrix multiplication to the small amount of CVs. After the
tessellation process the transformed vertices are lit.

In the current implementation stage no step size computation is
performed. As a first step we encourage the content author to set a

suitable tessellation bound simply based on the desired
smoothness. In addition, this value can be used to weight the
polygon budget of objects. Essential objects are given a high
tessellation value to ensure a smooth surface; less important
objects get a lower tessellation value because some coarseness is
tolerable.

Figure 2: pipelines for tessellation and rendering

View dependent rendering
The implementation is targeted to dynamic tessellation which
allows view-dependend rendering. Like the classical LOD,
NURBS objects can be scaled down according to the viewer’s
distance from the object. We have introduced a quality factor
describing the rendering quality by means of triangles per screen
size of the object. This value is comparable with the screen based
tolerance shown in section 1, because both values specify the
resolution of an object. In contrast to the screen based tolerance
the computation is very simple but is not directly related to the
curvature of the object

)(

)(

distbbox

scaletriangles
Quality =

With
2**)1(**)1()(scalevTessscaleuTessscaletriangles ++=

Quality: Describes rendering quality of an object
triangles(scale): Number of triangles of an object
bbox(dist): Diameter of the bounding box in screen space

The quality factor is specified by the tessellation values in VRML.
If the quality is assumed to be constant the scale value alters with
the distance of the viewer to the object. An additional feedback
loop can scale the quality factor according to the CPU speed
reflecting in the frame rate. The algorithm keeps the framerate
constant by scaling the NURBS content at any given CPU speed.
Of course, this implies that the whole scene has to be designed for
scaling: There has to be reasonable space for upscaling and
downscaling the tessellation and thus the appearance of an object
if moving away from the target platform. However, scalability is
not unlimited: In the average scene NURBS content is scaled
down very fast with CPU frequency since certain portions of the
overall computational effort do not decrease. The drawbacks of
CPU based scaling are that the authors lose control over the
appearance of the object since the client itself continuously alters
the object’s resolution. Proper lower bounds have to be defined to

avoid intolerable undersampling of the model. To overcome these
shortcomings additional parameters could be introduced: Authors
could specify the tessellation strategy or the lower boundary of the
quality.

Other parametric shapes like cylinders, cones and spheres can
profit from the NURBS LOD as well. A client could compose
these shapes with NURBS “behind the scenes,“ allowing seamless
scaling of the objects.

Large-scale NURBS surfaces are not addressed in this approach
and have to be subdivided by hand. In the worst case, a huge
surface is very coarse nearby while totally oversampled in its
remote parts. To avoid boundary cracks of adjacent surfaces due
to the view dependent rendering NURBS objects have to be
grouped in a NurbsGroup node.

Trimmed NURBS
The usage of the NURBS tessellator of OpenGL for the presented
nodes in the context of trimmed NURBS is straightforward. The
Contour2D node signals OpenGL the beginning and the end of a
trimming loop. The NurbsCurve2D coresponds to a
gluNurbsCurve and the Polyline2D is the VRML counterpart of
gluPwlCurve. The performance of glu's NURBS implementation
on the average PC (table 1) is low. In the trimmed NURBS case
performance decreased considerably in comparison to the
untrimmed one, reserving the OpenGL implementation to high
end workstations, at least until graphic boards supporting NURBS
in hardware on basis of the OpenGL API arise on the market.
Therefore in our implementation the performance penalty of
tessellation was avoided by caching the tessellated model. To
render even complex CAD models an optimal polygon count is
achieved by employing adaptive tessellation. Techniques relying
on realtime tessellation such as the animation of control vertices
and view depended rendering are out of the scope in this
implementation, but various LOD modells could be generated in a
preprocessing step. Further work has to be done in using trimmed
NURBS for LODs.

Figure 3 Triangulation of a trimmed NURBS patch by
adaptive tessellation

4. Results
For testing we take as a common scenario a scene with multiple
NURBS objects shown at high resolution and exploiting the
advantage of arbitrary resolution for a LOD. Multiuser worlds
with a huge number of avatars moving around or a shopping mall
containing a large number of products show this behaviour.

A sample implementation [bla2] of file exporters for 3d Studio
Max 2.5 and 3.0 respectively supports the new nodes. The
NURBS export function is fully integrated in the conventional
VRML97 file exporter in the 3.0 version. In another approach we
convert Open Inventor files to VRML. This method is
straightforward since the specification of the proposed nodes is
closely related to the one of Open Inventor NURBS. Supporting
authoring tools like 3d Studio Max seems to be more complex:
Internal NURBS data structures like ruled, loft and blended
surfaces have to be reduced to the basic NURBS surface. Various
tools especially in the CAD domain support the Open Inventor file
format. For professional modelling Alias Wavefront can be used.

IFS in D3D OpenGL Preprocessing ISSE
60fps 5fps 38fps 45fps

Table 1: Comparison between tessellation pipelines. The scene
contained an animated NURBS patch. Uniform tessellation
was configured to 5000 triangles. The frame rate increases
noticeable if the patch is stored as a IndexedFaceSet.

Animation with NURBS
The frame-by-frame tessellation allows us to alter the position of
the control points on the fly. To achieve effects like moving
waves with conventional meshes, many points have to be
animated at the cost of huge data size of CoordinateInterpolators
or complex scripts. By transferring this problem to NURBS, only
single control points have to be animated. Data size is kept very
small and scripts are very simple.

Currently this technique is only limited by the lack of suitable
authoring tools. Awesome effects can be achieved by-hand editing
the VRML file, but as the complexity of objects increases, tools
have to be used. A sample implementation based on 3D Studio
MAX shows the power of NURBS animations. The sampled
animation path is approximated by a spline and exported as a
NurbsPositionInterpolator.

Compression
The figures presented in this section can only give a idea of the
compression factor, since the factor largly depends on the degree
of curvature of the model. A NURBS model in 3d Studio Max
was exported to the VRML97 NURBS format and to a
conventional IndexedFaceSet with a resolution such that the
model did not show any rendering artefacts. However, this
comparison assumes that the NURBS model is shown at its
optimal resolution.

Figure 4 The Knight NURBS avatar composed of several
NURBS patches. Even at close ups the avatar stays smooth.
The avatar is taken out of the Knight NURBS demo of
Lunatic Interactive (www.lunatic.de).

IFS NURBS
a) curved surface 66K (6.8K Polygons) 7K
b) Knight NURBS 2MB (40K Polygons) 200K

Table 2 File size in KByte. a) A tool generated sphere
representing an average curved surface was exported as
NURBS surface (without expoiting the special characteristics
of a sphere) and as a mesh. b) A NURBS avatar shown in fig.
4.

Speed improvement with LOD
Depending on the scene, the LOD can speed up the rendering
process tremendously. Especially in a multiuser sceneario where
many avatars are moving in a scene, the LOD has a tremendous
impact on the performance. In a typical multiuser scenario, the
complexity of the environment is negligible in comparison to that
of 50 or even 100 avatars. Typically, avatars are tool-generated
and thus only poorly VRML-optimized. Experiments with
NURBS avatars have shown acceleration of at least 2x. Authoring
various LOD models for the conventional LOD node of VRML is
a time-consuming process whereas with NURBS the LODs come
for free.

IFS NURBS
fps 8 24
polygons 150K 35K

Table 3 Frame rate increases by factor 3 in this example when
employing NURBS avatars with LOD instead of
IndexedFaceSet based avatars. The overall polygon load of the
scene decreased from 150K polygons to 35K since only the
avatars close to the camera are of high resolution.

Figure 5 A scene with 10 high resolution avatars (15K
Polygons) positioned in different distances to the viewer was
rendered as IndexedFaceSet and as NURBS model with LOD.
The avatar was provided by the courtesy of okupi
(www.okupi.com).

5.SUBDIVISION SURFACES
Recently, subdivision surfaces have gained more attention as a
possible alternatives to NURBS. In particular, in areas such as
animation and entertainment, subdivision surfaces have been
employed. The reason for their increasing popularity is the fact
that it is possible to generate geometry with arbitrary topology
without introducing trimming. This simplifies the user interaction
considerably and also eliminates the robustness problems which
are inherent to trimmed NURBS.

The basic idea of subdivision surfaces is the following: Given is a
polygonal mesh M0. A refined mesh M1 is created by subdividing
each face into a collection of subfaces. Typically, the vertices of
the new mesh M1 are computed as weighted averages of the
vertices of the old mesh. Repeated application of this subdivision
step leads to a smooth limit surface. The most popular schemes
are Catmull-Clark subdivision [CC78] and Loop subdivision
[Loo87]. The two schemes differ in that Catmull-Clark is based
on rectangles and the limit surface is a bicubic B-Spline. Loop‘s
scheme is based on triangles. For commercial applications,
Catmull-Clark is favored since it directly generalizes the bicubic
tensor product B-Splines.

This scheme has been used at Pixar for the creation of geometry in
the short film Geri‘s game. In [DKT98] , the authors describe
techniques developed by Pixar for modelling sharp creases and for
texture mapping subdivision surfaces. Catmull-Clark subdivision
surfaces are also implemented in Alias/Wavefront Maya.

Evaluation of Subdivision Surfaces

It was a long-held belief that there is no direct way of evaluating a
subdivision surface efficiently. Looking at Figure 6 we can see
that almost everywhere the subdivision surface consists of
quadrilaterals which forms the control net of a bicubic B-Spline.
Only around the extraordinary vertices (vertices of valence not
equal 4) does the surface not correspond to a B-Spline. Stam
[Sta98] showed that even around extraordinary vertices, it is

possible to evaluate the surface directly and efficiently. This can
be achieved by transforming to a suitable basis, the eigenbasis
which correpsonds to the power basis in regular regions. Hence, it
is now much more practical to incorporate subdivision surfaces
into a modeling framework and to have them coexist with
standard NURBS.

Figure 6 Subdivision mesh with extraordinary vertices. Only
the marked patches can not be evaluated directly as bicubic B-
Splines.

Level of Detail Control
One of the strengths of subdivision surfaces is the built-in
multiresolution hierarchy. A mesh can be refined by performing
additional subdivision steps. Conversely, it is also possible to
coarsen the mesh by applying mesh decimation techniques. In
[ZSS97], the authors describe techniques for adding detail locally,
which allows to edit the model in a restricted region. It is also
shown how one can traverse the multiresolution hierarchy in
order to perform adaptive rendering. This enables the application
to trade off frame rates for level of detail as described in Section
3.

Summary
It is possible to put forth a proposal for subdivision surfaces in the
future which can make use of the NURBS standard proposed in
this paper. Subdivision surfaces address some issue which are
problematic for NURBS such as the modeling of arbitrary
topology. On the other hand, NURBS are well-established in the
engineering community and they are superior for modeling in an
engineering context. It is difficult to compare the storage and
hence the transmission requirements. A model which has lots of
detail in a local region favors a subdivision surface since it allows
to add detail locally, whereas in NURBS we have to modify the
patch globally. On the other hand, storing a full multiresolution
hierarchy can increase the transmission cost for subdivision
surfaces, whereas LOD control comes essentially for free when
rendering NURBS. In any case, both respresentations yield
significant compression ratios when compared to tessellated
models.

6. CONCLUSION
NURBS present a great opportunity to meet the requirements of
current hardware and the Internet. With NURBS scalable web
application can be created which react to the configuration of the
client system. Practical experience has proven that NURBS are

effective with current hardware and can save considerable
bandwidth. Besides this obvious advantage of data compression,
the LOD is a key feature. Defining various levels of detail of a
model is not left up to the author but computed automatically by
the application.

As a first step, work on the standardization of the proposed
NURBS nodes needs to be done. Secondly, a standard for the
tessellation and for the LOD technique have to be agreed upon to
guarantee same visual appearance of objects in various
implementations.

Further work has to do be done in the field of authoring solutions.
Due to the complexity of NURBS, objects cannot be modeled by
hand in a text editor. We have to develop file exporters and file
converters for the majority of the authoring tools to increase the
acceptance of NURBS in the community of content developers.
Looking farther ahead, one can imagine to incorporate subdivision
surfaces as well. Again, the issue of authoring solutions will have
to be addressed.

REFERENCES

[AES91] S.S. Abi-Ezzi, L.A. Shirman. Tessellation of curved
surfaces under highliy vaying transformations. Proceedings of
Eurographics 91, pages 385-397, 1991

[AES94] S.S. Abi-Ezzi, S. Subramaniam, Fast Dynamic
Tessellation of Trimmed NURBS Surfaces, Compter Graphics
Forum, Vol. 13 (3), 1994

[bla1]
http://www.blaxxun.com/developer/contact/3d/nurbs/overview.ht
ml

[bla2] blaxxun contact:
http://www.blaxxun.de/download/contact/index.html

[Dah86] W. Dahmen: Subdivision algorithms converge
quadratically, J. Comp. Appl. Math., Vol 16., pp. 125-158, 1986

[DKT98] T. DeRose, M. Kass, T. Truong, Subdivision Surfaces in
Character Animation. Computer Graphics Proceedings
(SIGGRAPH 98), pp 85-94, 1998

[Far96] G. Farin, Curves and Surfaces for Compter Aided
Geometric Design: A Practical Guide, 4th Edition, Academic
Press, Boston 1996

[FMM86] D. Filip, R. Magedson, R. Markot. Surface algorithms
using bounds on derivatives. CAGD (3), 295-311, 1986

[KML96] S. Kumar, D. Manocha, A. Lastra, Interactive Display
of large scale NURBS models, IEEE Transactions on
visualization and Computer Graphics, Vol. 2, December, 1996

[LC93] W.L. Luken and Fuhua Cheng, Rendering Trimmed
NURB Surfaces, Computer Science Research Report
18669(81711), IBM Research Division, 1993

[Luk93] W.L. Luken, Tessellation of Trimmed NURB Surfaces,
Computer Science Research Report 19322(84059), IBM Research
Division, 1993

[Loo87] C. Loop, Smooth Subdivision Surfaces Based on
Triangles. Master‘s thesis, University of Utah, Department of
Mathematics, 1987

[Pet94] J.W. Peterson, Tessellation of NURBS Surfaces, Graphic
Gems IV, Academic Press, p.286-320, Boston, 1994

[PT95] L. Piegl, W. Tiller, The NURBS Book, Springer,
Heidelberg, 1995

[RHD89] A. Rockwood, K. Heaton, T. Davis. Realtime rendering
of trimmed surfaces. In Proceedings of ACM Siggraph, pages
107-117, 1989

[sgi]
http://www.sgi.com/Technology/Inventor/VRML/VRMLDesign.h
tml

[Sta98] J. Stam, Exact Evaluation of Catmull-Clark Subdivision
Surfaces at Arbitrary Parameter Values. Computer Graphics
Proceedings (SIGGRAPH 98) pp 395-404, 1998

[web] source code of blaxxun Contact:
http://www.web3d.org/TaskGroups/source/blaxindex.html

[Wer94] J. Wernecke, The Inventor Mentor, Addison-Wesley,
1994

[ZSS97] D. Zorin, P. Schroeder, W. Sweldens, Interactive
Multiresolution Mesh Editing. Computer Graphics Proceedings
(SIGGRAPH 97) pp. 259-268, 1997

