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ABSTRACT
Current VRML browser implementations lack the flexibility of
adaptable user interfaces and navigation modes, in massive
contradiction to the primary motivation for using 3D, namely to
give the user a more natural understanding of how to interact
with computer systems and, in return, to make computer work
more time-efficient. Multimodal interaction, such as the use of
gesture and speech recognition, promises further improvement of
the usability of 3D applications but can only be seen in dedicated
applications thus far. We present a user interface framework
including the definition of a node set and the interfaces to other
devices: As a key feature, we propose a DeviceSensor node that
allows grabbing arbitrary user input, and a Camera node to
realize arbitrary navigation modes. The interface is based on the
abstract formalism of a context-free grammar providing the
representation of domain- and device-independent multimodal
information contents. By changing the grammer the behaviour of
the system can easily be modified.

Keywords
UI design, User Interface, HCI, 3D, Navigation

1. HISTORY OF USER INTERFACES
The study of user interfaces (UIs) has long drawn significant
attention as an independent research field, especially as a
fundamental problem of current computer systems is that due to
their growing functionality they are often complex to handle and
therefore they adaptation by the user to a high degree. However,
those interfaces would be particularly desirable whose handling
can be learned in a short time and that can be worked with
quickly, easily and, above all, intuitively. Computers should be
established as a common tool for everyday people.

In the course of time, the design of user interfaces has undergone
some development leading to different generations of interfaces.
According to Hennig[1] user interfaces can generally be
classified in the the following six categories:

1) Purely physical machine interfaces existed mainly in the
vacuum tube era. Interfaces of this generation consisted entirely

of fixed mechanical and electromechanical hardware, where
reprogramming the machine actually equaled rebuilding it. The
user must have profound knowledge of the system architecture
as he both had to construct and operate it. These early machines
were mostly used by experts for programming complex
calculations.

2) Batch systems (zero-dimensional UIs) have been the first
entirely software-based method to operate computers. The user
must have native programming skills. Typically he designed a
job (programming phase), submited the job to the machine
(execution phase) and then had to wait for the results. The
main drawback of this early approach was the lack of any kind
of system feedback, the results of the job were not known until
the job had been completely processed.

3) Line-oriented interfaces (one-dimensional UIs) have been
the first step toward using the computer as an everyday tool,
also for non-programmers. The user communicated with the
machine via an alphanumerical terminal. In a classical
question-and-answer style, the user was guided by very simple
and strictly hierarchically structured dialogs. A disadvantage of
this approach is that the user is caught in the dialog scheme and
thus is never in direct control of the interaction.

4) Full screen interfaces (two-dimensional UIs) shift the
interaction from fixed question-and-answer dialogs to a kind of
form-filling user interaction where the user is much more in
control how to interact with the system. As he is able to survey
a certain amount of upcoming tasks, he can better plan his
actions according to his intentions. Developing interfaces of
this generation involves defining a set of commands, designing
a menu system and providing some kind of screen navigation.

5) Graphical user interfaces (2.5 dimensional UIs) have
enhanced the full screen interface, introducing the desktop
metaphor [2], which served as a basis for most current desktop
systems. Composed of two-dimensional coordinates, the
elements of the interface are defined in planar areas which can
overlap on the screen due to the current window focus. The
interface provides an easy mechanism to freely operate the
underlying programs according to the classical WIMP-paradigm
(Window-Icon-Menu-Pointing). Besides direct manipulation [3]
the interfaces also provide early forms of multimodal man-
machine interaction.

6) Virtual reality (VR) interfaces (three dimensional UIs)
resemble the highest step in the development of man-machine
interfaces. The individual elements of the interface are defined
in 3D space containing both planar regions and spacial view
volumes. Highly interactive and immersive, they provide the
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most intuitive approach to communicate with the machine [4],
especially for non-skilled computer users.

Virtual reality user interfaces

Over the last decades, three-dimensional user interfaces as an
integral part of VR have undergone some development on their
own, too. Characterised by decreasing hardware prices and
continously growing computational power, the interfaces have
considerably improved from the development of the first HMD
by Sutherland[5] in the late sixties through the first immersive
flight simulators by Furness[6] up to generic VR toolkits like
WorldToolKit[7] in the early nineties.

The Information Visualizer[8] developed at Xerox PARC is an
experimental system which explores a 3D user interface
paradigm suitable for applications to manipulate large amounts
of information. Supporting various display techniques like
perspective walls for linear structured information or cone trees
for hierachical structured information it provides an intuitive way
of accessing documents.

Partly influenced by the Information Visualizer project, Leach[9]
took various concepts of the 2.5D desktop metaphor that proved
to be working and getting users' acceptance and transfered them
into a genuine 3D environment. Like in conventional desktop
GUIs, he uses windows, icons, as much as an area to visualize
the individual elements and an input device to manipulate the
cursor. The novelty of his approach was the introduction of a real
3D window manager and the integration of a 3D cursor
controlled by a mouse with six degrees of freedom (6DOF).

The WebBook[10] provides a different kind of information
visualisation. Based on a standard WWW-browser, website
information filtered according to user-specified criteria is
arranged on a virtual book page. Diverse pages are then
combined to a book in which the user can read and skim through
like in a real book. A further development is the WebForager, an
application that embeds the WebBook and other objects in a
hierarchical 3D workspace. The information space can contain
multiple pages occurring simultaneously or groups of pages in
the form of WebBooks, which the user can order and group
according to his needs.

Engelmeier[11] et. al introduced a system for the visualization of
3D anatomical data, derived from Magnetic Resonance Imaging
(MRI) or Computed Tomography (CT) enabling the physician to
navigate through a patient's 3D scans in a virtual environment.
They presented an easy to use multimodal human-machine
interface combining natural speech input, eye tracking and glove-
based hand gesture recognition. Using the implemented
interaction modalities they found out that speed and efficiency of
the diagnosis could be considerably improved.

In the course of the SGIM project Latoschik[12] et. al developed
an interface for interacting with multimedia systems by
evaluating both the user's speech and gestural input. The
approach is motivated by the idea of overcoming the physical
limitations of common computer displays and input devices.
Large-screen displays (wall projections, workbenches, caves)
enable the user to communicate with the machine in an easier
and more intuitive way. The last two projects represent typical

examples for the tendency towards applying multimodal
strategies in VR-interfaces.

Imposing the highest constraints on hard- and software, virtual
reality evolved to a cutting-edge technology integrating
information-, telecomunication- and entertainment issues[13].
Research in 3D user interfaces is a highly interdisciplinary task
relying on computer and cognitive science, psychology and
human factors analysis. VR aims at enabling the average user to
intuitively communicate with information systems to easily
realize and manipulate complex data content. Therefore the
applications of VR cover multiple domains ranging from 3D
animation and computer games through scientific visualization
up to complete virtual environments.

2. MOTIVATION AND TARGETS
Nowadays VRML-based 3D applications are typically embedded
in an HTML frameset since most applications also use HTML to
show text-based content. Quite often the user is overwhelmed by
the richness of functionality that a web page offers. Besides user
interface elements in the 3D window, the user has to cope with
others in HTML, naturally these differ considerably from the
look and feel of the 3D elements, not to mention all the elements
of the desktop system, which leads to an overall decrease of
usability. Usability tests underline that fact, revealing that even a
3D walkthrough could be overkill for the end user. On the other
side, VRML applications in the CAD/CAM domain and VRML-
based games lack more elaborate navigation features. Neither can
the browser’s built-in navigation features be adapted to the needs
of the application, nor does the 3D author have any flexibility to
create a unified UI.

From our experience with commercial 3D applications, we can
derive the requirements of a UI toolkit to design customizable
UIs and navigation modes. On the low end this toolkit has to deal
with a primitive navigation driven by the cursor keys and
switching on a light bulb by pressing another key; on the cutting
edge it has to cope with complex applications that involve
several runtime modules themselves, make use of highly realistic
3D models, and are controlled by speech recognition systems and
6DOF input devices. The GUI of the browser functionality
should be an integral part of the HTML frameset or of the 3D
window.

Features of the UI-toolkit:

• Allows the implementation of arbitrary navigation modes
with VRML

• Easy to use, no need to bother 3D math into depth

• Support for all kind of input devices

• Enables the design of arbitrary UIs

2.1 VRML Navigation Features and Event
Handling
Regarding the event handling of a browser implementation we
will find a rigid event routing (fig. 1) between the input events
like mouse movements and key strokes and the input handling,
that realizes the navigation, other UI elements and the VRML
sensors, e.g. a mouse drag over a anchor node is handled by the



anchor node, outside the anchor the movement serves as the
input for the navigation module. The processed events of the
sensor nodes fire in return events connected to event consumer
fields by ROUTE mechanism. The author has no influence on the
event flow and the event handling. Neither he can change the
reaction of the navigation module on user interaction nor he can
grab events in VRML directly for implementing a 3D UI.

The navigation module exposes only a small set of its
functionality by the Viewpoint node. Various viewpoints can be
defined and activated by binding the viewpoint to the browser.
By wrapping viewpoints in Transform nodes and applying
animations to them, guided tours can be implemented. Even
some simple navigation modes can be implemented by catching
user input with TouchSensors using it as an input for computing
a new user position and orientation in a Script node. As a
drawback no collision detection is performed and a lot of 3D
math is involved.

Figure 1: Event flow of common browser implementations

Figure 2: Event flow of blaxxun contact 5.0 with new
architecture

In the framework described in this paper we use the mechanism
of ROUTEs to break up the rigid event routing (fig. 2).
Additional devices can plug in the event dispatcher module of the

browser and dispatch their raw input to a DeviceSensor node in
the VRML scene graph. In addition, a device can trigger certain
browser actions by using CFG (context free grammar) module
commands as proposed in 4. At VRML scope the newly defined
DeviceSensor node, a KeyboardSensor and a MouseSensor give
access to all kinds of conceivable user input. The Camera node
gives superb control over the camera used for rendering: By
setting velocity vectors, the VRML author animates the camera.
The camera computes the distance vector for the current frame
under consideration of previous frame times and the results of
the collision detection. Besides a 6DOF navigation mode the
node supports an EXAMINE and a BEAMTO mode, thus
covering all conceivable navigation modes while hiding the nasty
details of 3D math from the VRML content author. However, in
the absence of a Camera, a default built-in navigation should
encompass a minimal navigation feature set allowing all basic
navigation actions such as the WALK, SLIDE, PAN, EXAMINE
modes.

As a consequence of the flexible event handling any given
VRML geometry can be used to implement a user interface.
World-specific navigation panels and menus can be a integral
part of the scene. A panel can easily be set up with HUDs
incorporating TouchSensor nodes. Menus can configure the
browser by dedicated vrml-script calls to the browser and even
drive other applications by using eventOut-observers of the EAI.

2.2 Interface to Advanced Input Devices and
other Applications
Human beings are able to process several interfering perceptions
at a high level of abstraction so that they can meet the demands
of the prevailing situation. Most of today's technical systems are
incapable of emulating this ability yet, although the information
processing of a human being works at a plainly lower throughput
than it can be reached in modern network architectures.
Therefore many researchers propose to apply multimodal system
interfaces, as they provide the user with more natural, expressive
power and flexibility. Multimodal operating systems work more
steadily than unimodal ones do because they integrate redundant
information shared between the individal input modalities. These
additional pieces of information are evaluated to enhance the
robustness of the system, especially in error-prone environments.

Here we present an approach for handling multimodal
information in a VRML browser which can be generated by
arbitrary and also multiple input devices. Therefore advanced
input devices like data gloves, motion capture systems or even
higher-level components like speech and hand/head gesture
recognition modules can be plugged into the eventdispatcher in
addition to the standard control devices like keyboard and mouse.
For interfacing to the browser we are using an abstract
communication formalism based on a context-free grammar.

Based on this abstract model we are able to represent domain-
and device-independent multimodal information contents. The
various events and user interactions are combined in a semantic
unification process and thereby mapped on an abstract model of
the functionality vocabulary. Thus for example, both natural
speech utterances and hand gestures are described in the same
formalism. Of course the multimodal information sources have to
be integrated in a meaningful way to cope with typical problems



like redundant and concurrent information and different running
times of the participating recognition components.

As the individual input devices all share the same formalism, it
makes no difference to the browser module by which exact input
device a specific event has been generated. The browser module
just operates on the formal model of the grammar. An additional
advantage of this approach is that arbitrary new information
sources can easily be integrated into the interface, too.

3. Node Proposal - Extension Nodes for
Customizable Input Handling and Navigation
3.1 Camera

Camera {
  exposedField   SFString mode „SIXDOF“,
„EXAMINE“, „BEAMTO"
  eventIn       SFBool    set_bind
  eventIn        SFVec3f  xyz             0 0 0
  eventIn        SFVec3f  ypr             0 0 0
  eventIn        SFVec3f  moveTo          0 0 0
  eventIn        SFVec3f  orientTo        0 0 0
  eventIn        SFVec3f  examineCenter   0 0 0
  eventIn        SFInt32  examineRadius   0
  eventIn        SFTime   duration        0
  exposedField   SFVec3f  positionOffset
  exposedField   SFRotation orientationOffset
  exposedField   SFBool     collision   TRUE
  exposedField   SFBool     gravity      TRUE
  exposedField   SFVec3f    down          -1 0 0
  exposedField   SFFloat    fieldOfView   0.785398
  exposedField   SFBool     jump           TRUE
  exposedField   SFRotation orientation    0 0 1 0
  exposedField   SFVec3f    position       0 0 10
  field          SFString   description    ""
  eventOut       SFTime     bindTime
  eventOut       SFBool     isBound
}

The mode specifies the basic mode of the camera, SIXDOF,
EXAMINE, or BEAMTO. All standard modes like WALK,
SLIDE, PAN, FLY are regarded as a subset of the SIXDOF mode
and are realized by applying different values to the ypr and the
xyz field. The xyz field specifies the speed in m/s, the ypr (yaw,
pitch, roll) field is in rad/s. It is under consideration to also
introduce an acceleration, but by now we see the gradual
increase or decrease of the velocity vectors as a sufficient
alternative. The current position and orientation of the camera
are always updated according to the velocity and can also be set
even if the velocity vectors are set.

In the EXAMINE mode, the camera is moved on a virtual sphere
with the center examineCenter and the radius examineRadius.
The camera target (look-at point) is not changed, i.e. the viewer
moves on the virtual sphere but does not look to the center
automatically. To change the camera target see orientTo. The x
and y components of the xyz field are interpreted as a velocity
vector on the virtual shpere.

In the BEAMTO mode the viewer position is animated in
duration seconds to the moveTo position and the viewing
direction is turned to see orientTo point.

positionOffset and orientationOffset are additional offsets
applied to the current camera position and orientation while
maintaining the values of position and orientation. The

orientationOffset could implement a keyboard-driven look
up/down left/right while controling the standard WALK mode
with the mouse.

If the gravity field is set to TRUE, the built-in ground detection
is enabled. To detect the ground, a ray hit test is performed with
a ray defined by the down vector. Thus velocity vectors in
contrary direction of the down-vector are disregarded. The
collision-field switches the collision detection of the browser.

The Camera node is derived from the Viewpoint node and
inherits all Viewpoint fields, since its basic functionality is to
control the camera, too. For the documentation of the Viewpoint
fields please refer to the VRML97 specifiction. Like the
Viewpoint-node, the Camera is bindable and is queued in the
same stack as the viewpoints. To activate a certain Camera, it
has to be in front of all other cameras and viewpoint definitions
at file scope or has to be bound explicitly. Of course, the bind
mechanism can be used to switch between various navigation
modes if corresponding configured cameras are present in the
scene. If velocity vectors are set, the position and orientation
should also updated if the camera is not bound. If for example a
train is chased by various cameras each with its own fieldOfView
etc. it is essential to have real-time positions in every Camera-
node to allow camera changes.

3.2 DeviceSensor
The DeviceSensor-node is capable of observing arbitrary input
devices such as a six degrees-of-freedom mouse or a speech
recognition system. The device data is wrapped in an Event node
which already covers a considerable amount of possible event
types. Special-purpose devices can replace the default
implementation with their own Event node, guaranteeing
maximum flexibility for the support of all possible input devices.

DeviceSensor {
  exposedField SFBool enabled TRUE
  exposedField MFString device
"<device>:<subDevice>:<deviceParam>"
  exposedField MFString  eventType
“mouseup“, “mousedown“,...

  eventOut SFNode      event
  eventOut SFBool      isActive
    }

The device field specifies the hardware device which is observed
by the node. A subdevice string allows further refinement of the
selection of the device output data. By setting

Device = “MOUSE:LBUTTON”

all events generated by the left mouse button are reported by the
DeviceSensor.

<device> ::= MOUSE | KEYBOARD | JOYSTICK | SIXDOF

If the device is MOUSE, the following subdevice values are
valid:

<subdevice> ::= LBUTTON | MBUTTON | RBUTTON |
MWHEEL

KEYBOARD:

<subdevice> ::=  NUMPAD, CURSOR, ALPHANUMERIC



Additionally the eventType field determines which event types to
oberserve. The eventType accpets multiple type values that are
specified in W3C-DOM-Level2 [14] (see Apendix 7.1). For
devices not mentioned here a new device name can be created.
The node uses this string for identifying the device driver
plugged into the event-dispatcher (see 1.1).

3.3 Event
The Event node is modeled after the W3C-DOM Events [14].
Event {

  eventIn  SFBool     cancelBubble
  eventIn  SFBool     returnValue

  eventOut SFString   type
  eventOut SFVec2f    screen
  eventOut SFVec2f    client
  eventOut SFVec2f    position

      eventOut SFVec3f    xyz
  eventOut SFVec3f    ypr
  eventOut SFBool     altKey
  eventOut SFBool     ctrlKey
  eventOut SFBool     shiftKey
  eventOut SFInt32    keyCode
  eventOut SFString   dataType
  eventOut SFString    data
  eventOut SFInt32    button

}

For a detailed description of the fields refer to the DOM-model
[14], see also Appendix 7.1. Nevertheless some additional fields
can be found in the definition.

For drag-and drop-events the dataType- and data fields have
been added. The dataType-field can have following values:

<dataType> ::= File | URL | HTML | Text | Image

The data field delivers the URL of the data.

3.4 MouseSensor
Analogous to the KeyboardSensor we define a MouseSensor that
reports the events of the mouse.
MouseSensor {
  exposedField SFBool enabled TRUE

  eventOut SFVec2f     client
  eventOut SFVec2f    position

  eventOut SFBool    lButton
  eventOut SFBool      mButton
  eventOut SFBool      rButton
  eventOut SFFLoat    mouseWheel
  eventOut SFBool      isActive
  eventIn  SFBool      returnValue
 }

The client-field indicates the coordinate at which the event
occurred relative to browser’s client window. The position-field
indicates the normalized coordinate at which the event occurred.

lButton, mButton, rButton events are generated as the buttons are
pressed and released.

The mouseWheel field indicates the distance rotated. If the wheel
is rotated forward the values are positive, in the other case they

are negative. The size of the value depends on the resolution of
the mouse-wheel. Typical values are mutiples of 120.

If the returnValue is set to false no default action associated
with the event is excuted by the browser.

3.5 KeyboardSensor
As a shortcoming of the VRML200x proposed KeyboardSensor
[15] (see Appendix 7.2) the node catches all keyboard events.
Even if certain keys that are normally used by the browser are
not processed in the scene, the events get lost for the browser.
Following the W3C-DOM-proposal [14] we propose to add a
returnValue field.

4. Interfacing with the Browser
For simplification we assume that the functionality vocabulary of
the interface resp. that of the underlying application can be
completely described by an grammar formalism. Based on this
abstract model we are able to represent domain- and device-
independently both high- and low-level multimodal information
contents.

A grammar G=(V,T,P,S) consists of non-terminal symbols (V:
alphabet of variables and metasymbols representing the structure
of the language) and terminal symbols (T: alphabet of valid
words). By applying grammatically correct production rules (P)
to the variables new elements can be generated. Finally, S is an
element of V representing the start symbol for the substitution
process. In the special case of a context-free grammar (CFG)
which we are using here, the left side of a production rule must
contain only a single variable. Thus, ant any given time any
variable can be replaced by the ride side of its rule independent
of the current context. The rules themselves are not
deterministic, i.e. the right sides of the rules normally consist of
a sequence of termial and non-terminal elements.

A single word of this grammar corresponds to a single command
or an event of the interface. Multiple words form a sentence
which denotes a sequence of actions like a whole session. The
language defined by the grammar represents the multitude of all
potential interactions. A part of a typical context-free grammar
we are using in our projects is given below. It is described in
BNF (Backus-Naur Form) and demonstrates a small part of the
possibile actions in the WALK-mode. By convention, the
variables are written in capital letters and the terminal elements
in small letters. According to that grammar a valid command of
the functionality vocabulary would e.g. be: “walk trans forward”.

<S> ::= <SESSION>
<SESSION> ::= <COMMAND> <SESSION> | quit
<COMMAND>::= <CONTROL> | <WALK> | <FLY> | ...

<WALK> ::= walk <WSEQ> | walk <SESSION>
<WSEQ> ::= <W> | <W> <WSEQ>
<W> ::= trans <ALLSEQ> | rot <LRSEQ>

<ALLSEQ>     ::= <ALL> | <ALL> <ALLSEQ>
<ALL>     ::= <LR> | <FB> | <UD> | <DIAG>
<UD>          ::= up | down
<LR>          ::= left | right
<FB>          ::= forward | backward



Messages and events created by the various low- and high-level
devices from simple keystrokes to complex natural speech
utterances are semantically unified and mapped on the abstract
device-independent formalism of the formal grammar. Based on
the created information contents, the CFG-module triggers the
specific browser functionalities by using the EAI. For navigation,
this mainly concentrates on routing the commands to the above
described camera node. The concept has proven to be working in
a prototypical implementation which can be adapted by the user
according to his individual needs.

The key feature of our approach using the CFG-modul as a meta-
device interfacing the various input devices to the browser is that
it provides a high level access to the functionality of the
individual recognition moduls. By changing the underlying
context-free grammar the interaction behaviour of the target
application can easily be modified also by non-experts without
having to deal with the technical specifications of the input
devices. The commands of the grammar are comprehensible
straight forward as they inherently make sense.

5. Case Studies
To demonstrate the benefit of customizable navigation modes
two reference implementations taking advantage of the Camera
and the DeviceSensor-node have been made [16]. The formerly
used navigation panel and right-click menu is replaced by
VRML-based implementations. With vrml-script calls the
VRML-author can get the current status of the browser with the
getOptions-function, e.g. status of texture smoothing or texture
dithering, and set new values with the setOptions-function.

5.1 Implementation of a Minimal Navigation
A very intuitive method of navigating in 3D is to animate the
camera to the point which has been selected by a mouse click.
Because inexperienced 3D users are overwhelmed by a “drag
navigation” they try to reach their target by clicking on it. By
using the selection test of the browser triggered by a mouse click
of the user the target point is determined. This point or a point
close to it is used as the moveTo and the orientTo point of a
Camera with the BEAMTO-mode activated.

5.2 Advanced Navigation Features
Experienced users prefer to explore their 3D environment using
various navigation modes acting with the mouse and the
keyboard simultanously. For the implementation of a third person
view and a look up/down mechanism we use the positionOffset
and the orientationOffset in the Camera. In a mulituser (MU)
environment the position of the avatar corresponds to the
position and orientation of the camera, whereas the offsets have
no effect on the avatar. Regarding a human body the velocity
vectors have effect on the corpus and the head while a
orientationOffset is only applied to the head. Thus it has to be
checked in a further step in how far this movement of the avatar
head would fit into the H-Anim specification, and how the head
movement could be sent over the network in a MU-environment.

In our sample we use the cursor-keys to control the
orientationOffset allwoing the user to look left and right, up and
down while walking and without switching the mode.
Furthermore the used script implements a third person view by
adding a positionOffset. Thinking of games a car racing could

use the velocity vectors to move the car and allow the player to
look out of the side window by setting an orientationOffset. By
setting a positionOffset the player could see his car.

6. Conclusion
By tailoring applications to user profiles as shown in our case
studies we can enable a broader use of VRML applications. The
proof of concept is already given by the implementation of the
nodes in blaxxun contact 5.0 and several sample applications.
Therefore we propose to add the new nodes to the VRML200x
standard.

Working with the DeviceSensor and advanced input devices such
as the 6DOF mouse we came to the result that even further
extensions seem to be desirable:

Although one can use other devices than the mouse for
navigation the pointing device used to activate the sensor nodes
(TouchSensor etc) is tied to the mouse. To use other input
devices the DeviceSensor need to drive the pointing device.
Either a new node definition, e.g. PointingDevice, could process
the device input or the browser gets the position values through a
vrml-script call, e.g. browser.setCursorPos(SFVec2f position).
For real 3D interaction a 3D version of the PointingDevice could
be driven by a 6DOF input device such as a data glove or a
6DOF mouse. Instead of a ray-hit test a real collision detection
between a geometry specified for pointing such as a hand and the
sensor geometry would trigger sensors. In both cases
mechnanisms have to be found to give the visual feedback for
isOver events.
Nodes of the MPEG4 standard [17] promise further improvment
of the UI design process. Upcoming 2D node implementations
are actually more suitable for implementing user interface
elements such as a navigation panel or menus. Since the 2D
rendering and the 2D user interaction can be handled more
efficiently by browser implementation, frequently observed
performance bottlenecks will be avoided.
At last promising proposals dealing with input devices in the
MPEG4 domain can serve as basis for a common proposal. A
collisionSensor defined for 3D as well as for 2D allows to test
arbitrary geometry for collision with the scene [18]. In contrast to
our generic approach of supporting various input devices with the
DeviceSensor the MPEG4 proposal describes dedicated sensors
such as a GestureSensor and a BodySensor. Even so the
definitions are not contradictive since the special purpose sensors
could be implemented as PROTOs receiving the data from the
generic DeviceSensor.

7. Appendix
7.1 W3C-DOM level2
type

The type property represents the event name as a string
property.

cancelBubble

The cancelBubble property is used to control the bubbling
phase of event flow. If the property is set to true, the event will
cease bubbling at the current level. If the property is set to false,
the event will bubble up to its parent. The default value of this
property is determined by the event type.



returnValue

If an event is cancellable, the returnValue property is
checked by the DOM implementation after the event has been
processed by its event handlers. If the returnValue is false,
the DOM implementation does not execute any default actions
associated with the event.

Event types

click

The click event occurs when the pointing device button is clicked
over an element. This attribute may be used with most elements.

Bubbles: Yes

Cancellable: Yes

Context Info: screen, client, position, altKey, ctrlKey, shiftKey,
button

dblclick

The dblclick event occurs when the pointing device button is
double-clicked over an element. This attribute may be used with
most elements.

Bubbles: Yes

Cancellable: Yes

Context Info: screen, client, position, altKey, ctrlKey, shiftKey,
button

mousedown

The mousedown event occurs when the pointing device button is
pressed over an element.

Bubbles: Yes

Cancellable: Yes

Context Info: screen, client, position, altKey, ctrlKey, shiftKey,
button

mouseup

The mouseup event occurs when the pointing device button is
released over an element.

Bubbles: Yes

Cancellable: Yes

Context Info: screen, client, position, altKey, ctrlKey, shiftKey,
button

mouseover

The mouseover event occurs when the pointing device is moved
onto an element.

Bubbles: Yes

Cancellable: Yes

Context Info:screen, client, position, altKey, ctrlKey, shiftKey

mousemove

The mousemove event occurs when the pointing device is moved
while it is over an element.

Bubbles: Yes

Cancellable: No

Context Info:screen, client, position, altKey, ctrlKey, shiftKey

mouseout

The mouseout event occurs when the pointing device is moved
away from an element.

Bubbles: Yes

Cancellable: Yes

Context Info: screen, client, position, altKey, ctrlKey, shiftKey,
button

keypress

The keypress event occurs when a key is pressed and released.

Bubbles: Yes

Cancellable: Yes

Context Info: keyCode, charCode

keydown

The keydown event occurs when a key is pressed down.

Bubbles: Yes

Cancellable: Yes

Context Info: keyCode, charCode

keyup

The keyup event occurs when a key is released.

Bubbles: Yes

Cancellable: Yes

Context Info: keyCode, charCode

resize

The resize event occurs when a document is resized.

Bubbles: Yes

Cancellable: No

Context Info: None

screen

screen.x indicates the horizontal coordinate at which the
event occurred relative to the origin of the screen coordinate
system. screen.y indicates the vertical coordinate at which
the event occurred relative to the origin of the screen coordinate
system.

client

client.x indicates the horizontal coordinate at which the
event occurred relative to the DOM implementation's client
area.
client.y indicates the vertical coordinate at which the event
occurred relative to the DOM implementation's client area.

position

position.x indicates the horizontal coordinate at which the event
occurred relative to the DOM implementation's normalized
client area.
position.y indicates the vertical coordinate at which the event
occurred relative to the DOM implementation's normalized client
area.



 

altKey

altKey indicates whether the 'Alt' key was depressed during
the firing of the event.

ctrlKey

ctrlKey indicates whether the 'Ctrl' key was depressed during
the firing of the event.

shiftKey

shiftKey indicates whether the shift key was depressed
during the firing of the event.

keyCode

The value of keyCode holds the virtual key code value of the
key which was depressed if the event is a key event. Otherwise,
the value is zero. Currently the raw Win32 keycode is reported.

7.2 Nodes of other proposals

7.38 KeySensor
interface KeySensor : KeydeviceSensorNode {
  attribute SFInt32 keyPress
  attribute SFInt32 keyRelease
  attribute SFInt32 actionKeyPress
  attribute SFInt32 actionKeyRelease
  attribute SFBool shiftKey_changed
  attribute SFBool controlKey_changed
  attribute SFBool altKey_changed
  attribute SFBool isActive
}

A KeySensor node generates events when the user presses keys
on the keyboard. The KeySensor supports the notion of
"keyboard focus"; if there are multiple KeyboardSensors and/or
StringSensors in a world, only one will generate events at any
given time.
keyPress and keyRelease events are generated as keys which
produce characters are pressed and released on the keyboard. The
value of these events is an integer which is the UTF-8 character
value for the key pressed. The set of UTF-8 characters that can
be generated will vary between different keyboards and different
implementations.
actionKeyPress and actionKeyRelease events are generated as
'action' keys are pressed and released on the keyboard. The value
of these events are in Table 7.9.
shiftKey_changed, controlKey_changed, and altKey_changed
events are generated as the shift, alt and control keys on the
keyboard are pressed and released. Their value is TRUE when
the key is pressed and FALSE when the key is released.
The KeySensor is activated when it receives an isActive event.
Only the most recent KeySensor or StringSensor to receive an
isActive event can receive input from the keydevice. Thus, all
other KeySensors and StringSensors become inactive until the
most recently activated KeySensor has its isActive field set to
FALSE.

The KeySensor is not affected by its position in the
transformation hierarchy.

7.66 StringSensor
interface StringSensor : KeydeviceSensorNode {
  attribute SFString enteredText;   # initial
value: ""
  attribute SFString finalText;   # initial
value: ""
  attribute SFString terminationText;   # initial
value: "\r" (carriage return character)
  attribute SFInt32  deletionCharacter;  # initial
value: "\b" (backspace character)
  attribute SFBool   isActive;   # initial
value: FALSE
}

A StringSensor node generates events as the user presses keys on
the keyboard. The StringSensor supports the notion of "keyboard
focus"; if there are multiple StringSensors or KeySensors in a
world, only one will generate events at any given time.
enteredText events are generated as keys which produce
characters are pressed on the keyboard. The value of this event is
the UTF-8 string entered including the latest character struck.
The set of UTF-8 characters that can be generated will vary
between different keyboards and different implementations. If a
deletionCharacter is entered, the previously entered character in
the enteredText is removed. The deletionCharacter field contains
the integer representation of one UTF-8 character. It may be a
control character. If the deletionCharacter is 0, no deletion
operation is provided.
The finalText event is generated whenever a sequence of
keystrokes are recognized which match the keys in the
terminationText string. When this recognition occurs, the
enteredText is moved to the finalText and the enteredText is set
to the empty string. This causes both a finalText event and an
enteredText event to be generated.
The StringSensor is activated when it receives an isActive event.
Only the most recent StringSensor or KeySensor to receive an
isActive event can receive input from the keydevice. Thus, all
other StringSensors or KeySensors become inactive until the
most recently activated StringSensor or KeySensor has its
isActive field set to FALSE.
The StringSensor is not affected by its position in the
transformation hierarchy.

CollisionSensor2D
The CollisionSensor2D allows to detect the collision between a
node reactiveNode which is a 2D Shape, and the group of objects
in which the CollisionSensor2D is inserted. Its use in a scene is
explained in Figure 3.
The BIFS proposed syntax for the CollisionSensor2D is
described as follows :

CollisionSensor2D {
ExposedField SFBool enable
ExposedField SFShape2DNode

reactiveNode  null
EventOut SFBool isOver
EventOut SFBool isInside
EventOut SFBool isOutside
EventOut SFTime EventTime



EventOut SFFloat inCoef
}

The coefficient inCoef gives additional information about the
collision state. It corresponds to the ratio of the surface of the
reactive node which is over the group of sensitive objects. Its
value can be computed e.g. as ratio of overlapping pixels over
total pixel number. The following table gives practical examples
(Figure 4).
The node CollisionSensor2D is not directly bound to a device, as
is the case of the other sensors described in this paper. However,
the denomination « sensor » seems appropriate for many reasons.
Various parameters in the reactive node can be animated with
BIFS-Anim. E.g. position, rotation and scale could be animated
by a stream coming from another user's terminal. It is also
possible to put as reactive node a bitmap displaying a raw video
which is segmented in real-time and inserted in the terminal
directly. This last configuration is illustrated in Figure 5 showing
how the image of a person, segmented in real time and inserted
in a scene, can become a « actor » of a scene through a
CollisionSensor2D.

CollisionSensor
The node CollisionSensor is strictly equivalent to the previous
2D version, apart from its 3D nature. Here is the syntax proposed
for the CollisionSensor :

CollisionSensor {
ExposedField SFBool enable TRUE
ExposedField SFShape3DNode

reactiveNode  
EventOut SFBool isOver
EventOut SFBool isInside
EventOut SFBool isOutside
EventOut SFTime EventTime
EventOut SFFloat inCoef

}
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