
The

Virtual

Reality

Modeling

Language

International Standard ISO/IEC 14772-1:1997

Copyright © 1997 The VRML Consortium Incorporated.

Copyright Information

Copyright Information
Copyright © 1997 The VRML Consortium Incorporated. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice,
this paragraph and the title, URL, and authors of the Document as referenced below are included on all
such copies and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the VRML Consortium, except as needed for the purpose
of developing VRML standards in which case the procedures for copyrights defined in the VRML
Consortium standards process must be followed.

TITLE: ISO/IEC 14772-1:1997 Virtual Reality Modeling Language (VRML97)
URL: http://www.vrml.org/Specifications/VRML97
AUTHORS: Rikk Carey, Gavin Bell, Chris Marrin

The limited permissions granted above are perpetual and will not be revoked by the VRML Consortium or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE VRML
CONSORTIUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as contained in this notice, the name of the VRML Consortium shall not be used in advertising or to
otherwise promote the sale, use or other dealings of this document without prior written authorization from
the VRML Consortium.

INTELLECTUAL PROPERTY NOTICE
The VRML Consortium takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be available; neither
does it represent that it has made any effort to identify any such rights. Information on the VRML
Consortium's procedures with respect to rights in standards-track documents can be found in the VRML
Consortium's Intellectual Property Rights Statement. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementers or users of this
specification can be obtained from the VRML Consortium Executive Director.

The VRML Consortium invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be required to practice
this standard. Please address the information to the VRML Consortium Executive Director.

Other copyrights and trademarks
All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

Acknowledgements
The VRML Consortium gratefully acknowledges the authors, Rikk Carey, Gavin Bell, and Chris Marrin,
whose valuable efforts produced the VRML standard.

We would like to give special thanks to Steve Carson, chair of the ISO/IEC JTC 1/SC 24, Computer
Graphics and Image Processing subcommittee, and to Dick Puk, liaison between the VRML Consortium
and SC 24, for guiding the standards process as well as their significant contributions to the document
itself. Also, thanks to all the members of ISO who participated in the review and editing of ISO/IEC 14772.

Special thanks to Kouichi Matsuda and the Sony VRML team for their work on the Java annex and to Jan
Hardenbergh for his work on the ECMAScript annex. Thanks to Curtis Beason, Chris Fouts, John
Gebhardt, Rich Gossweiler, Paul Isaacs, and Daniel Woods for writing key sections. Thanks to Justin
Couch and the Script Working Group for drafting several improvements to the scripting sections. Thanks to
all the others who drafted text for the standard, too numerous to name them all.

Thanks to Mark Pesce, Tony Parisi, Mitra, Brian Behlendorf, and Dave Raggett for their early pioneering
work and continued efforts on VRML.

Thanks to the hundreds of participants who contributed ideas, reviews, and feedback on the VRML
standard.

Thanks to Kevin Hughes for the VRML logo artwork.

And, last but not least, thanks to the members of the VRML community for their support, passion, and hard
work that has made VRML into an International Standard.

The Virtual Reality Modeling Language
International Standard ISO/IEC 14772-1:1997

Copyright © 1997 The VRML Consortium Incorporated.

This document is part 1 of ISO/IEC 14772-1:1997, the Virtual Reality Modeling Language (VRML), also referred to
as "VRML97". The full title of this part of the International Standard is: Information technology -- Computer
graphics and image processing -- The Virtual Reality Modeling Language (VRML) -- Part 1: Functional
specification and UTF-8 encoding.

Background Clauses Annexes

 Foreword ii 1 Scope 1 A Grammar 141

 Introduction iii 2 Normative references 3 B Java platform 148

3 Definitions 6 C ECMAScript 185

 4 Concepts 19 D Examples 209

 5 Field and event reference 62 E Bibliography 233

 6 Node reference 67 F Extensions 235

 7 Conformance 132

The Foreword provides background on the standards process for VRML. The Introduction describes the purpose,
design criteria, and characteristics of VRML. The following clauses define part 1 of ISO/IEC 14772:

a. Scope defines the problem area that VRML addresses.

b. Normative references lists the normative standards referenced in this part of ISO/IEC 14772.

c. Definitions contains the glossary of terminology used in this part of ISO/IEC 14772.

d. Concepts describes various fundamentals of VRML.

e. Field and event reference specifies the datatypes used by nodes.

f. Node reference defines the syntax and semantics of VRML nodes.

g. Conformance and minimum support requirements describes the conformance requirements for VRML
implementations.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

There are several annexes included in the specification:

A. Grammar definition presents the grammar for the VRML file format.

B. Java platform scripting reference describes how VRML scripting integrates with the Java platform.

C. ECMAScript scripting reference describes how VRML scripting integrates with ECMAScript.

D. Examples includes a variety of VRML example files.

E. Bibliography lists the informative, non-standard topics referenced in this part of ISO/IEC 14772.

F. Recommendations for non-normative extensions lists informative recommendations for extensions to
VRML.

Questions or comments should be sent to rikk@wasabisoft.com.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

ii

Foreword

Foreword
ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form a specialized system for worldwide standardization.
National bodies that are members of ISO or IEC participate in the development of
International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. See http://www.iso.ch for information on ISO and
http://www.iec.ch for information on IEC.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote. See
http://www.iso.ch/meme/JTC1.html for information on JTC 1.

International Standard ISO/IEC 14772 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee 24, Computer graphics and
image processing, in collaboration with The VRML Consortium, Inc.
(http://www.vrml.org) and the VRML moderated email list (www-
vrml@vrml.org).

ISO/IEC 14772 consists of the following part, under the general title Information
technology -- Computer graphics and image processing -- The Virtual Reality Modeling
Language:

Part 1: Functional specification and UTF-8 encoding.

Further parts will follow.

Annexes A to C form an integral part of this part of ISO/IEC 14772. Annexes D to F are
for information only.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

iii

Introduction

Purpose

The Virtual Reality Modeling Language (VRML) is a file format for describing
interactive 3D objects and worlds. VRML is designed to be used on the Internet,
intranets, and local client systems. VRML is also intended to be a universal interchange
format for integrated 3D graphics and multimedia. VRML may be used in a variety of
application areas such as engineering and scientific visualization, multimedia
presentations, entertainment and educational titles, web pages, and shared virtual worlds.

Design Criteria

VRML has been designed to fulfill the following requirements:

Authorability

Enable the development of computer programs capable of creating, editing, and
maintaining VRML files, as well as automatic translation programs for converting
other commonly used 3D file formats into VRML files.

Composability

Provide the ability to use and combine dynamic 3D objects within a VRML world
and thus allow re-usability.

Extensibility

Provide the ability to add new object types not explicitly defined in VRML.

Be capable of implementation

Capable of implementation on a wide range of systems.

Performance

Emphasize scalable, interactive performance on a wide variety of computing
platforms.

Scalability

Enable arbitrarily large dynamic 3D worlds.

Characteristics of VRML

VRML is capable of representing static and animated dynamic 3D and multimedia
objects with hyperlinks to other media such as text, sounds, movies, and images. VRML
browsers, as well as authoring tools for the creation of VRML files, are widely available
for many different platforms.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

iv

VRML supports an extensibility model that allows new dynamic 3D objects to be defined
allowing application communities to develop interoperable extensions to the base
standard. There are mappings between VRML objects and commonly used 3D
application programmer interface (API) features.

1

Information technology --
Computer graphics and image processing --
The Virtual Reality Modeling Language --

Part 1: Functional specification and UTF-8 encoding

1 Scope

ISO/IEC 14772, the Virtual Reality Modeling Language (VRML), defines a file format that integrates 3D graphics
and multimedia. Conceptually, each VRML file is a 3D time-based space that contains graphic and aural objects that
can be dynamically modified through a variety of mechanisms. This part of ISO/IEC 14772 defines a primary set of
objects and mechanisms that encourage composition, encapsulation, and extension.

The semantics of VRML describe an abstract functional behaviour of time-based, interactive 3D, multimedia
information. ISO/IEC 14772 does not define physical devices or any other implementation-dependent concepts (e.g.,
screen resolution and input devices). ISO/IEC 14772 is intended for a wide variety of devices and applications, and
provides wide latitude in interpretation and implementation of the functionality. For example, ISO/IEC 14772 does
not assume the existence of a mouse or 2D display device.

Each VRML file:

a. implicitly establishes a world coordinate space for all objects defined in the file, as well as all objects
included by the file;

b. explicitly defines and composes a set of 3D and multimedia objects;

c. can specify hyperlinks to other files and applications;

d. can define object behaviours.

An important characteristic of VRML files is the ability to compose files together through inclusion and to relate
files together through hyperlinking. For example, consider the file earth.wrl which specifies a world that contains a
sphere representing the earth. This file may also contain references to a variety of other VRML files representing
cities on the earth (e.g., file paris.wrl). The enclosing file, earth.wrl, defines the coordinate system that all the cities
reside in. Each city file defines the world coordinate system that the city resides in but that becomes a local
coordinate system when contained by the earth file.

Hierarchical file inclusion enables the creation of arbitrarily large, dynamic worlds. Therefore, VRML ensures that
each file is completely described by the objects contained within it.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

2

Another essential characteristic of VRML is that it is intended to be used in a distributed environment such as the
World Wide Web. There are various objects and mechanisms built into the language that support multiple
distributed files, including:

g. in-lining of other VRML files;

h. hyperlinking to other files;

i. using established Internet and ISO standards for other file formats;

j. defining a compact syntax.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

3

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this part of ISO/IEC 14772. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this part of ISO/IEC 14772 are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.

Annex E, Bibliography, contains a list of informative documents and technology.

Identifier Reference

1766
IETF RFC 1766, Tags for the Identification of Languages, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1766.txt

CGM
ISO/IEC 8632:1992 (all parts) Information technology -- Computer graphics -- Metafile for the
storage and transfer of picture description information.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8632

ESCR

ISO/IEC DIS 16262 Information technology -- ECMAScript: A general purpose, cross-platform
programming language.
http://www.ecma.ch
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=16262

HTML
HTML 3.2 Reference Specification.
http://www.w3.org/TR/REC-html32.html

I639
ISO 639:1988 Code for the representation of names of languages.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10918&searchtype=refnumber,
http://www.chemie.fu-berlin.de/diverse/doc/ISO_639.html

I3166
ISO 3166:1997 (all parts) Codes for the representation of names of countries
and their subdivisions. http://www.iso.ch/isob/switch-engine-
cate.pl?searchtype=refnumber&KEYWORDS=3166

 I8859
ISO/IEC 8859-1:1987 Information technology -- 8-bit single-byte coded graphic character sets --
Part 1: Latin alphabet No. 1.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8859

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

4

ISOC
ISO/IEC 9899:1990 Programming languages -- C.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=9899

ISOG
ISO/IEC 10641:1993 Information technology -- Computer graphics and image processing --
Conformance testing of implementations of graphics standards.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10641&searchtype=refnumber

JAVA

"The Java Language Specification" by James Gosling, Bill Joy and Guy Steele, Addison
Wesley, Reading Massachusetts, 1996, ISBN 0-201-63451-1.
http://java.sun.com/docs/books/jls/index.html

"The Java Virtual Machine Specification" by Tim Lindhold and Frank Yellin, Addison Wesley,
Reading Massachusetts, 1996, ISBN 0-201-63452-X.
http://java.sun.com/docs/books/vmspec/index.html

JPEG

"JPEG File Interchange Format," JFIF, Version 1.02, 1992.
http://www.w3.org/pub/WWW/Graphics/JPEG/jfif.txt

ISO/IEC 10918-1:1994 Information technology -- Digital compression and coding of
continuous-tone still images: Requirements and guidelines.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10918&searchtype=refnumber

MIDI
Complete MIDI 1.0 Detailed Specification, MIDI Manufacturers Association,
P.O. Box 3173, La Habra, CA 90632 USA 1996.
http://www.midi.org

MPEG
ISO/IEC 11172-1:1993 Information technology -- Coding of moving pictures and associated
audio for digital storage media at up to about 1,5 Mbit/s -- Part 1: Systems.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=11172

PNG
PNG (Portable Network Graphics), Specification Version 1.0, W3C Recommendation, 1
October 1996.
http://www.w3.org/pub/WWW/TR/REC-png-multi.html

RURL
IETF RFC 1808 Relative Uniform Resource Locator, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1808.txt

URL
IETF RFC 1738 Uniform Resource Locator, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1738.txt

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

5

UTF8

ISO/IEC 10646-1:1993 Information technology -- Universal Multiple-Octet Coded Character
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane, Internet standards track protocol.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=10646,
http://ds.internic.net/rfc/rfc2044.txt

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

6

3 Definitions

For the purposes of this part of ISO/IEC 14722, the following definitions apply.

3.1 activate

To cause a sensor node to generate an "isActive" event. The various types of sensor nodes are "activated" by user
interactions, the passage of time, or other events. Only active sensor nodes affect the user’s experience. A Script
node is activated when it receives an event. A pointing device such as a mouse is activated when one of its buttons is
depressed by a user. See 4.12.2, Script execution, for details.

3.2 ancestor

A node which is an antecedent of another node in the transformation hierarchy.

3.3 author

A person or agent that creates VRML files. Authors typically use generators to assist them.

3.4 authoring tool

See generator.

3.5 avatar

The abstract representation of the user in a VRML world. The physical dimensions of the avatar are used for
collision detection and terrain following. See 6.29, NavigationInfo, for details.

3.6 bearing

A straight line passing through the pointer location in the direction of the pointer. If multiple sensors' geometry
intersect this line, only the sensor nearest the viewer will be eligible to generate events regardless of material and
texture properties (e.g., transparency).

3.7 bindable node

A node that may have many instances in a scene graph, but only one instance may be active at any instant of time. A
node of type Background, Fog, NavigationInfo, or Viewpoint. See 4.6.10, Bindable children nodes, for details.

3.8 browser

A computer program that interprets VRML files, presents their content to a user on a display device, and allows the
user to interact with worlds defined by VRML files by means of a user interface.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

7

3.9 browser extension

Nodes defined using the prototyping mechanism that are understood only by certain browsers. See
4.9.3, Browser extensions, for details.

3.10 built-in node

A node of a type explicitly defined in this part of ISO/IEC 14772.

3.11 callback

A function defined in a scripting language to which events are passed. See 4.12.8, EventIn handling, for details.

3.12 candidate

One of potentially several choices. The user or the browser will select none or one of the choices when all
candidates are identified. See 4.6.10, Bindable children nodes, and 6.2, Anchor, for details.

3.13 child

An instance of a children node.

3.14 children node

One of a set of node types, instances of which can be collected in a group to share specific properties dependent on
the type of the grouping node. See 4.6.5, Grouping and children nodes, for a list of allowable children nodes.

3.15 client system

A computer system, attached to a network, that relies on another computer (the server) for essential processing
functions. Many client systems also function as stand-alone computers.

3.16 collision proxy

A node used as a substitute for all of a Collision node's children during collision detection. See 6.8, Collision, for
details.

3.17 colour model

Characterization of a colour space in terms of explicit parameters. ISO/IEC 14772 allows colours to be defined only
with the RGB colour model. However, colour interpolation is performed in the HSV colour space.

3.18 culling

The process of identifying objects or parts of objects which do not need to be processed further by the browser in
order to produce the desired view of a world.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

8

3.19 descendant

A node which descends from another node in the transformation hierarchy. A children node.

3.20 display device

A graphics device on which VRML worlds may be rendered.

3.21 drag sensor

A pointing device sensor that causes events to be generated in response to sensor-dependent pointer motions. For
example, the SphereSensor generates spherical rotation events. A node of type CylinderSensor, PlaneSensor, or
SphereSensor. See 4.6.7, Sensor nodes, and 4.6.7.4, Drag sensors, for details.

3.22 environmental sensor

A sensor node that generates events based on the location of the viewpoint in the world or in relation to objects in
the world. The TimeSensor node generates events at regular intervals in time. A node of type Collision,
ProximitySensor, TimeSensor, or VisibilitySensor. See 4.6.7.2, Environmental sensors, for details.

3.23 event

A message sent from one node to another as defined by a route. Events signal external stimuli, changes to field
values, and interactions between nodes. An event consists of a timestamp and a field value.

3.24 event cascade

A sequence of events initiated by a script or sensor event and propagated from node to node along one or more
routes. All events in an event cascade are considered to have occurred simultaneously. See 4.10.3, Execution model,
for details.

3.25 eventIn

A logical receptor attached to a node which receives events.

3.26 eventOut

A logical output terminal attached to a node from which events are sent. The eventOut also stores the event most
recently sent.

3.27 execution model

The rules governing how events are processed by browsers and scripts.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

9

3.28 exposed field

A field that is capable of receiving events via an eventIn to change its value(s), and generating events via an
eventOut when its value(s) change.

3.29 external prototype

A prototype defined in an external file and referenced by a URL.

3.30 field

A property or attribute of a node. Each node type has a fixed set of fields. Fields may contain various kinds of data
and one or many values. Each field has a default value.

3.31 field name

The identifier of a field. Field names are unique within the scope of the node.

3.32 file

A collection of related data. A file may be stored on physical media or may exist as a data stream or as data within a
computer program.

3.33 frame

A single rendering of a world on a display device or a single time-step in a simulation.

3.34 generator

A computer program which creates VRML files. A generator may be used by a person or operate automatically.
Synonymous with authoring tool.

3.35 geometric property node

A node defining the properties of a specific geometry node. A node of type Color, Coordinate, Normal, or
TextureCoordinate. See 4.6.3.2, Geometric property nodes, for details.

3.36 geometric sensor node

A node that generates events based on user actions, such as a mouse click or navigating close to a particular object.
A node of type CylinderSensor, PlaneSensor, ProximitySensor, SphereSensor, TouchSensor, VisibilitySensor, or
Collision. See 4.6.7.1, Introduction to sensors, for details.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

10

3.37 geometry node

A node containing mathematical descriptions of three-dimensional (3D) points, lines, surfaces, text strings and
solids. A node of type Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet, IndexedLineSet, PointSet,
Sphere, or Text. See 4.6.3, Shapes and geometry, for details.

3.38 grab

To receive events from activated pointing devices (e.g., mouse or wand). A pointing device sensor becomes the
exclusive recipient of pointing device events when one or more pointing devices are activated simultaneously.

3.39 gravity

In the context of ISO/IEC 14772, gravity may be simulated by constraining the motion of the viewpoint to the
lowest possible path (smallest Y-coordinate in the local coordinate system of the viewpoint) consistent with
following the surface of encountered objects. See 6.29, NavigationInfo, for details.

3.40 grouping node

One of a set of node types which include a list of nodes, referred to as its children nodes. These children nodes are
collected together to share specific properties dependent on the type of the grouping node. Each grouping node
defines a coordinate space for its children relative to its own coordinate space. The children may themselves be
instances of grouping nodes, thus forming a transformation hierarchy. See 4.6.5, Grouping and children nodes, for
details.

3.41 HSV

Hue, Saturation, and Value colour model. See E.[FOLE].

3.42 HTML

HyperText Markup Language. See 2.[HTML] .

3.43 hyperlink

A reference to a URL that is associated with an Anchor node. See 6.2, Anchor, for details.

3.44 ideal VRML implementation

An implementation of VRML that presents all objects and simulates movement without approximation. Not
realizable in practice.

3.45 IEC

International Electrotechnical Commission. See http://www.iec.ch.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

11

3.46 IETF

Internet Engineering Task Force. The organization which develops Internet standards. See
http://www.ietf.org/overview.html.

3.47 image

A two-dimensional (2D) rectangular array of pixel values. Pixel values may have from one to four components. See
5.5, SFImage, for details.

3.48 in-lining

The mechanism by which one VRML file is hierarchically included in another.

3.49 Internet

The world-wide named network of computers which communicate with each other using a common set of
communication protocols known as TCP/IP. See IETF. The World Wide Web is implemented on the Internet.

3.50 instance

A reference to a previously defined and named node. Nodes are named by means of the DEF syntax and reference
by USE syntax (see 4.6.2, DEF/USE semantics). Instances of nodes may be used in any context in which the
defining node may be used.

3.51 interpolator node

A node that defines a piece-wise linear interpolation. A node of type ColorInterpolator, CoordinateInterpolator,
NormalInterpolator, OrientationInterpolator, PositionInterpolator, or ScalarInterpolator. See 4.6.8, Interpolator
nodes, for details.

3.52 intranet

A private network that uses the same protocols and standards as the Internet.

3.53 ISO

International Organization for Standardization. See http://www.iso.ch/infoe/intro.html.

3.54 JPEG

Joint Photographic Experts Group. See 2.[JPEG].

3.55 JTC 1

ISO/IEC Joint Technical Committee 1. See http://www.iso.ch/meme/JTC1.html.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

12

3.56 level of detail

The amount of detail or complexity which is displayed at any particular time for any particular object. The level of
detail for an object is controllable as a function of the distance of the object from the viewer. See 6.26, LOD, for
details. (Abbreviated LOD)

3.57 line terminator

A linefeed character (0x0A) or a carriage return character (0x0D).

3.58 loop

A sequence of events which would result in a specific eventOut sending more than one event with the same
timestamp.

3.59 message

A data string sent between nodes upon the occurrence of an event. See 4.10, Event processing, for details.

3.60 MIDI

Musical Instrument Digital Interface. A standard for digital music representation. See 2.[MIDI] .

3.61 MIME

Multipurpose Internet Mail Extension. Used to specify filetyping rules for Internet applications, including browsers.
See 4.5.1, File extension and MIME types, for details. See also E.[MIME] .

3.62 mouse

A pointing device that moves in two dimensions and that enables a user to move a cursor on a display device in
order to point at displayed objects. One or more push buttons on the mouse allow the user to indicate to the
computer program that some action is to be taken.

3.63 MPEG

Moving Picture Experts Group. See http://drogo.cselt.stet.it/mpeg/.

3.64 multimedia

An integrated presentation, typically on a computer, of content of various types, such as computer graphics, audio,
and video.

3.65 network

Set of interconnected computers.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

13

3.66 node

The fundamental component of a scene graph in ISO/IEC 14772. Nodes are abstractions of various real-world
objects and concepts. Examples include spheres, lights, and material descriptions. Nodes contain fields and events.
Messages may be sent between nodes along routes.

3.67 node type

A characteristic of each node that describes, in general, its particular semantics. For example, Box, Group, Sound,
and SpotLight are node types. See 4.6, Node semantics, and 6, Node reference, for details.

3.68 now

The present time as perceived by the user.

3.69 object

A collection of data and procedures, packaged according to the rules and syntax defined in ISO/IEC 14772. "Object"
is usually synonymous with node.

3.70 object space

The coordinate system in which an object is defined.

3.71 panorama

A background texture that is placed behind all geometry in the scene and in front of the ground and sky. See 6.5,
Background, for details.

3.72 parent

A node which is an instance of a grouping node.

3.73 PNG

Portable Network Graphics. A specification for representing two-dimensional images in files. See 2.[PNG].

3.74 pointer

A location and direction in the virtual world defined by the pointing device which the user is currently using to
interact with the virtual world.

3.75 pointing device

A hardware device connected to the user’s computer by which the user directly controls the location and direction of
the pointer. Pointing devices may be either two-dimensional or three-dimensional and may have one or more control
buttons. See 4.6.7.5, Activating and manipulating sensors, for details.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

14

3.76 pointing device sensor

A sensor node that generates events based on user actions, such as pointing device motions or button activations. A
node of type Anchor, CylinderSensor, PlaneSensor, SphereSensor, or TouchSensor. See
4.6.7.3, Pointing device sensors, for details.

3.77 polyline

A sequence of straight line segments where the end point of the first segment is coincident with the start point of the
second segment, the endpoint of the second segment is coincident with the start point of the third segment, and so
on. A piecewise linear curve.

3.78 profile

A named collection of criteria for functionality and conformance that defines an implementable subset of a standard.

3.79 prototype

The definition of a new node type in terms of the nodes defined in this part of ISO/IEC 14772.
See 4.8, Prototype semantics, for details.

3.80 prototyping

The mechanism for extending the set of node types from within a VRML file.

3.81 public interface

The formal definition of a node type in this part of ISO/IEC 14772.

3.82 RGB

The colour model used within ISO/IEC 14772 for the specification of colours. Each colour is represented as a
combination of the three primary colours red, green, and blue. See E.[FOLE].

3.83 route

The connection between a node generating an event and a node receiving the event. See 4.3.9, Route statement
syntax, and 4.10.2, Route semantics, for details.

3.84 route graph

The set of connections between eventOuts and eventIns formed by ROUTE statements or addRoute method
invocations.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

15

3.85 run-time name scope

The extent to which a name defined within a VRML file applies and is visible. Several different run-time name
scopes are recognized and are defined in 4.4.6, Run-time name scope.

3.86 RURL

Relative Uniform Resource Locator. See 2.[RURL].

3.87 scene graph

An ordered collection of grouping nodes and other nodes. Grouping nodes, (such as LOD, Switch, and Transform
nodes) may have children nodes. See 4.2.3, Scene graph, and 4.4.2, Scene graph hierarchy, for details.

3.88 script

A set of procedural functions normally executed as part of an event cascade (see 6.40, Script). A script function may
also be executed asynchronously (see 4.12.6, Asynchronous scripts).

3.89 scripting

The process of creating or referring to a script.

3.90 scripting language

A system of syntactical and semantic constructs used to define and automate procedures and processes on a
computer. Typically, scripting languages are interpreted and executed sequentially on a statement-by-statement basis
whereas programming languages are generally compiled prior to execution.

3.91 sensor node

A node that enables the user to interact with the world in the scene graph hierarchy. Sensor nodes respond to user
interaction with geometric objects in the world, the movement of the user through the world, or the passage of time.
See 4.6.7, Sensor nodes, for details.

3.92 separator character

A UTF-8 character used to separate syntactical entities in a VRML file. Specifically, commas, spaces, tabs, linefeeds,
and carriage-returns are separator characters wherever they appear outside of string fields. See
4.3.1, Clear text (UTF-8) encoding, for details.

3.93 sibling

A node which shares a parent with other nodes.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

16

3.94 simulation tick

The smallest time unit capable of being identified in a digital simulation of analog time. Time in the context of
ISO/IEC 14772 is conceptually analog but is realized by an implementation as a digital simulation of abstract analog
time. See 4.11, Time, for details.

3.95 special group node

A grouping node that exhibits special behaviour. Examples of such special behaviour include selecting one of many
children nodes to be rendered based on a dynamically changing parameter value and dynamically loading children
nodes from an external file. A node of type Inline, LOD (level of detail), or Switch. See
4.6.5, Grouping and children nodes, for details.

3.96 texture

An image used in a texture map to create visual appearance effects when applied to geometry nodes.

3.97 texture coordinates

The set of two-dimensional coordinates used by some vertex-based geometry nodes (e.g., IndexedFaceSet and
ElevationGrid) and specified in the TextureCoordinate node to map textures to the vertices of those nodes. Texture
coordinates range from 0 to 1 across each axis of the texture image. See 4.6.11, Texture maps, and
6.48, TextureCoordinate, for details.

3.98 texture map

A texture plus the general parameters necessary for mapping the texture to geometry.

3.99 time

A monotonically increasing value generated by a node. Time (0.0) starts at 00:00:00 GMT January 1, 1970. See
4.11, Time, for details.

3.100 timestamp

The part of a message that describes the time the event occurred and that caused the message to be sent. See
4.11, Time, for details.

3.101 transformation hierarchy

The subset of the scene graph consisting of nodes that have well-defined coordinate systems. The transformation
hierarchy excludes nodes that are not descendants of the scene graph root nodes and nodes in SFNode or MFNode
fields of Script nodes.

3.102 transparency chunk

A section of a PNG file containing transparency information (derived from 2.[PNG]).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

17

3.103 traverse

To process the nodes in a scene graph in the correct order.

3.104 UCS

Universal multiple-octet coded Character Set. See 2.[UTF8].

3.105 URL

Uniform Resource Locator. See 2.[URL].

3.106 URN

Universal Resource Name. See E.[URN].

3.107 UTF-8

The character set used to encode VRML files. The 8-bit UCS Transformation Format. See 2.[UTF8].

3.108 user

A person or agent who uses and interacts with VRML files by means of a browser.

3.109 viewer

A location, direction, and viewing angle in a virtual world that determines the portion of the virtual world presented
by the browser to the user.

3.110 virtual world

See world.

3.111 VRML browser

See browser.

3.112 VRML document server

A computer program that locates and transmits VRML files and supporting files in response to requests from
browsers.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

18

3.113 VRML file

A set of VRML nodes and statements as defined in this part of ISO/IEC 14772. This set of VRML nodes and
statements may be in the form of a file, a data stream, or an in-line sequence of VRML information as defined by a
particular VRML encoding.

3.114 wand

A pointing device that moves in three dimensions and that enables a user to indicate a position in the three-
dimensional coordinate system of a world in order to point at displayed objects. One or more push buttons on the
wand allow the user to indicate to the computer program that some action is to be taken.

3.115 white space

One or more consecutive occurrences of a separator character. See 4.3.1, Clear text (UTF-8) encoding, for details.

3.116 world

A collection of one or more VRML files and other multimedia content that, when interpreted by a VRML browser,
presents an interactive experience to the user consistent with the author’s intent.

3.117 world coordinate space

The coordinate system in which each VRML world is defined. The world coordinate space is an orthogonal right-
handed Cartesian coordinate system. The units of length are metres.

3.118 World Wide Web

The collection of documents, data, and content typically encoded in HTML pages and accessible via the Internet
using the HTTP protocol.

3.119 XY plane

The plane perpendicular to the Z-axis that passes through the point Z = 0.0.

3.120 YZ plane

The plane perpendicular to the X-axis that passes through the point X = 0.0.

3.121 ZX plane

The plane perpendicular to the Y-axis that passes through the point Y = 0.0.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

19

4 Concepts

4.1 Introduction and table of contents

4.1.1 Introduction

This clause describes key concepts in ISO/IEC 14772. This includes how nodes are combined into scene graphs,
how nodes receive and generate events, how to create node types using prototypes, how to add node types to VRML
and export them for use by others, how to incorporate scripts into a VRML file, and various general topics on nodes.

4.1.2 Table of contents

See Table 4.1 for the table of contents for this clause.

Table 4.1 -- Table of contents, Concepts

4.1 Introduction and table of contents
 4.1.1 Introduction
 4.1.2 Table of contents
 4.1.3 Conventions used

4.2 Overview
 4.2.1 The structure of a VRML file
 4.2.2 Header
 4.2.3 Scene graph
 4.2.4 Prototypes
 4.2.5 Event routing
 4.2.6 Generating VRML files
 4.2.7 Presentation and interaction
 4.2.8 Profiles

4.3 UTF-8 file syntax
 4.3.1 Clear text (UTF-8) encoding
 4.3.2 Statements
 4.3.3 Node statement syntax
 4.3.4 Field statement syntax
 4.3.5 PROTO statement syntax
 4.3.6 IS statement syntax
 4.3.7 EXTERNPROTO statement syntax
 4.3.8 USE statement syntax
 4.3.9 ROUTE statement syntax

4.4 Scene graph structure
 4.4.1 Root nodes
 4.4.2 Scene graph hierarchy
 4.4.3 Descendant and ancestor nodes
 4.4.4 Transformation hierarchy

4.7 Field, eventIn, and eventOut semantics

4.8 Prototype semantics
 4.8.1 Introduction
 4.8.2 PROTO interface declaration semantics
 4.8.3 PROTO definition semantics
 4.8.4 Prototype scoping rules

4.9 External prototype semantics
 4.9.1 Introduction
 4.9.2 EXTERNPROTO interface semantics
 4.9.3 EXTERNPROTO URL semantics

4.10 Event processing
 4.10.1 Introduction
 4.10.2 Route semantics
 4.10.3 Execution model
 4.10.4 Loops
 4.10.5 Fan-in and fan-out

4.11 Time
 4.11.1 Introduction
 4.11.2 Time origin
 4.11.3 Discrete and continuous changes

4.12 Scripting
 4.12.1 Introduction
 4.12.2 Script execution
 4.12.3 Initialize() and shutdown()
 4.12.4 eventsProcessed()
 4.12.5 Scripts with direct outputs
 4.12.6 Asynchronous scripts

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

20

 4.4.5 Standard units and coordinate system
 4.4.6 Run-time name scope

4.5 VRML and the World Wide Web
 4.5.1 File extension and MIME type
 4.5.2 URLs
 4.5.3 Relative URLs
 4.5.4 Scripting language protocols

4.6 Node semantics
 4.6.1 Introduction
 4.6.2 DEF/USE semantics
 4.6.3 Shapes and geometry
 4.6.4 Bounding boxes
 4.6.5 Grouping and children nodes
 4.6.6 Light sources
 4.6.7 Sensor nodes
 4.6.8 Interpolator nodes
 4.6.9 Time-dependent nodes
 4.6.10 Bindable children nodes
 4.6.11 Texture maps

 4.12.7 Script languages
 4.12.8 EventIn handling
 4.12.9 Accessing fields and events
 4.12.10 Browser script interface

4.13 Navigation
 4.13.1 Introduction
 4.13.2 Navigation paradigms
 4.13.3 Viewing model
 4.13.4 Collision detection and terrain following

4.14 Lighting model
 4.14.1 Introduction
 4.14.2 Lighting 'off'
 4.14.3 Lighting 'on'
 4.14.4 Lighting equations
 4.14.5 References

4.1.3 Conventions used

The following conventions are used throughout this part of ISO/IEC 14772:

Italics are used for event and field names, and are also used when new terms are introduced and equation variables
are referenced.

A fixed-space font is used for URL addresses and source code examples. ISO/IEC 14772 UTF-8 encoding
examples appear in bold, fixed-space font.

Node type names are appropriately capitalized (e.g., "The Billboard node is a grouping node..."). However, the
concept of the node is often referred to in lower case in order to refer to the semantics of the node, not the node itself
(e.g., "To rotate the billboard...").

The form "0xhh" expresses a byte as a hexadecimal number representing the bit configuration for that byte.

Throughout this part of ISO/IEC 14772, references are denoted using the "x.[ABCD]" notation, where "x" denotes
which clause or annex the reference is described in and "[ABCD]" is an abbreviation of the reference title. For
example, 2.[ABCD] refers to a reference described in clause 2 and E.[ABCD] refers to a reference described in
annex E.

4.2 Overview

4.2.1 The structure of a VRML file

A VRML file consists of the following major functional components: the header, the scene graph, the prototypes,
and event routing. The contents of this file are processed for presentation and interaction by a program known as a
browser.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

21

4.2.2 Header

For easy identification of VRML files, every VRML file shall begin with:

#VRML V2.0 <encoding type> [optional comment] <line terminator>

The header is a single line of UTF-8 text identifying the file as a VRML file and identifying the encoding type of the
file. It may also contain additional semantic information. There shall be exactly one space separating "#VRML" from
"V2.0" and "V2.0" from "<encoding type>". Also, the "<encoding type>" shall be followed by a
linefeed (0x0a) or carriage-return (0x0d) character, or by one or more space (0x20) or tab (0x09) characters
followed by any other characters, which are treated as a comment, and terminated by a linefeed or carriage-return
character.

The <encoding type> is either "utf8" or any other authorized values defined in other parts of ISO/IEC 14772.
The identifier "utf8" indicates a clear text encoding that allows for international characters to be displayed in
ISO/IEC 14772 using the UTF-8 encoding defined in ISO/IEC 10646-1 (otherwise known as Unicode); see
2.[UTF8]. The usage of UTF-8 is detailed in 6.47, Text, node. The header for a UTF-8 encoded VRML file is

#VRML V2.0 utf8 [optional comment] <line terminator>

Any characters after the <encoding type> on the first line may be ignored by a browser. The header line ends
at the occurrence of a <line terminator>. A <line terminator> is a linefeed character (0x0a) or a
carriage-return character (0x0d) .

4.2.3 Scene graph

The scene graph contains nodes which describe objects and their properties. It contains hierarchically grouped
geometry to provide an audio-visual representation of objects, as well as nodes that participate in the event
generation and routing mechanism.

4.2.4 Prototypes

Prototypes allow the set of VRML node types to be extended by the user. Prototype definitions can be included in
the file in which they are used or defined externally. Prototypes may be defined in terms of other VRML nodes or
may be defined using a browser-specific extension mechanism. While ISO/IEC 14772 has a standard format for
identifying such extensions, their implementation is browser-dependent.

4.2.5 Event routing

Some VRML nodes generate events in response to environmental changes or user interaction. Event routing gives
authors a mechanism, separate from the scene graph hierarchy, through which these events can be propagated to
effect changes in other nodes. Once generated, events are sent to their routed destinations in time order and
processed by the receiving node. This processing can change the state of the node, generate additional events, or
change the structure of the scene graph.

Script nodes allow arbitrary, author-defined event processing. An event received by a Script node causes the
execution of a function within a script which has the ability to send events through the normal event routing
mechanism, or bypass this mechanism and send events directly to any node to which the Script node has a reference.
Scripts can also dynamically add or delete routes and thereby changing the event-routing topology.

The ideal event model processes all events instantaneously in the order that they are generated. A timestamp serves
two purposes. First, it is a conceptual device used to describe the chronological flow of the event mechanism. It
ensures that deterministic results can be achieved by real-world implementations that address processing delays and
asynchronous interaction with external devices. Second, timestamps are also made available to Script nodes to allow
events to be processed based on the order of user actions or the elapsed time between events.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

22

4.2.6 Generating VRML files

A generator is a human or computerized creator of VRML files. It is the responsibility of the generator to ensure the
correctness of the VRML file and the availability of supporting assets (e.g., images, audio clips, other VRML files)
referenced therein.

4.2.7 Presentation and interaction

The interpretation, execution, and presentation of VRML files will typically be undertaken by a mechanism known
as a browser, which displays the shapes and sounds in the scene graph. This presentation is known as a virtual world
and is navigated in the browser by a human or mechanical entity, known as a user. The world is displayed as if
experienced from a particular location; that position and orientation in the world is known as the viewer. The
browser provides navigation paradigms (such as walking or flying) that enable the user to move the viewer through
the virtual world.

In addition to navigation, the browser provides a mechanism allowing the user to interact with the world through
sensor nodes in the scene graph hierarchy. Sensors respond to user interaction with geometric objects in the world,
the movement of the user through the world, or the passage of time.

The visual presentation of geometric objects in a VRML world follows a conceptual model designed to resemble the
physical characteristics of light. The VRML lighting model describes how appearance properties and lights in the
world are combined to produce displayed colours (see 4.14, Lighting Model, for details).

Figure 4.1 illustrates a conceptual model of a VRML browser. The browser is portrayed as a presentation application
that accepts user input in the forms of file selection (explicit and implicit) and user interface gestures
(e.g., manipulation and navigation using an input device). The three main components of the browser are: Parser,
Scene Graph, and Audio/Visual Presentation. The Parser component reads the VRML file and creates the Scene
Graph. The Scene Graph component consists of the Transformation Hierarchy (the nodes) and the Route Graph. The
Scene Graph also includes the Execution Engine that processes events, reads and edits the Route Graph, and makes
changes to the Transform Hierarchy (nodes). User input generally affects sensors and navigation, and thus is wired
to the Route Graph component (sensors) and the Audio/Visual Presentation component (navigation). The
Audio/Visual Presentation component performs the graphics and audio rendering of the Transform Hierarchy that
feeds back to the user.

4.2.8 Profiles

ISO/IEC 14772 supports the concept of profiles. A profile is a named collection of functionality and requirements
which shall be supported in order for an implementation to conform to that profile. Only one profile is defined in
this part of ISO/IEC 14772. The functionality and minimum support requirements described in ISO/IEC 14772-1
form the Base profile. Additional profiles may be defined in other parts of ISO/IEC 14772. Such profiles shall
incorporate the entirety of the Base profile.

4.3 UTF-8 file syntax

4.3.1 Clear text (UTF-8) encoding

This section describes the syntax of UTF-8-encoded, human-readable VRML files. A more formal description of the
syntax may be found in annex A, Grammar definition. The semantics of VRML in terms of the UTF-8 encoding are

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

23

presented in this part of ISO/IEC 14772. Other encodings may be defined in other parts of ISO/IEC 14772. Such
encodings shall describe how to map the UTF-8 descriptions to and from the corresponding encoding elements.

For the UTF-8 encoding, the # character begins a comment. The first line of the file, the header, also starts with a
"#" character. Otherwise, all characters following a "#", until the next line terminator, are ignored. The only
exception is within double-quoted SFString and MFString fields where the "#" character is defined to be part of the
string.

Figure 4.1 -- Conceptual model of a VRML browser

Commas, spaces, tabs, linefeeds, and carriage-returns are separator characters wherever they appear outside of string
fields. Separator characters and comments are collectively termed whitespace.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

24

A VRML document server may strip comments and extra separators including the comment portion of the header
line from a VRML file before transmitting it. WorldInfo nodes should be used for persistent information such as
copyrights or author information.

Field, event, PROTO, EXTERNPROTO, and node names shall not contain control characters (0x0-0x1f, 0x7f),
space (0x20), double or single quotes (0x22: ", 0x27: '), sharp (0x23: #), comma (0x2c: ,), period (0x2e: .), brackets
(0x5b, 0x5d: []), backslash (0x5c: \) or braces (0x7b, 0x7d: {}). Further, their first character shall not be a digit
(0x30-0x39), plus (0x2b: +), or minus (0x2d: -) character. Otherwise, names may contain any ISO 10646 character
encoded using UTF-8. VRML is case-sensitive; "Sphere" is different from "sphere" and "BEGIN" is different from
"begin."

The following reserved keywords shall not be used for field, event, PROTO, EXTERNPROTO, or node names:

• DEF

• EXTERNPROTO

• FALSE

• IS

• NULL

• PROTO

• ROUTE

• TO

• TRUE

• USE

• eventIn

• eventOut

• exposedField

• field

4.3.2 Statements

After the required header, a VRML file may contain any combination of the following:

a. Any number of PROTO or EXTERNPROTO statements (see 4.8, Prototype semantics);

b. Any number of root node statements (see 4.4.1, Root nodes);

c. Any number of USE statements (see 4.6.2, DEF/USE semantics);

d. Any number of ROUTE statements (see 4.10.2, Route semantics).

4.3.3 Node statement syntax

A node statement consists of an optional name for the node followed by the node's type and then the body of the
node. A node is given a name using the keyword DEF followed by the name of the node. The node's body is
enclosed in matching braces ("{ }"). Whitespace shall separate the DEF, name of the node, and node type, but is not
required before or after the curly braces that enclose the node's body. See A.3, Nodes, for details on node grammar
rules.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

25

[DEF <name>] <nodeType> { <body> }

A node's body consists of any number of field statements, IS statements, ROUTE statements, PROTO statements or
EXTERNPROTO statements, in any order.

See 4.6.2, DEF/USE, sematnics for more details on node naming. See 4.3.4, Field statement syntax, for a description
of field statement syntax and 4.7, Field, eventIn, and eventOut semantics, for a description of field statement
semantics. See 4.6, Node semantics, for a description of node statement semantics.

4.3.4 Field statement syntax

A field statement consists of the name of the field followed by the field's value(s). The following illustrates the
syntax for a single-valued field:

<fieldName> <fieldValue>

The following illustrates the syntax for a multiple-valued field:

<fieldName> [<fieldValues>]

See A.4, Fields, for details on field statement grammar rules.

Each node type defines the names and types of the fields that each node of that type contains. The same field name
may be used by multiple node types. See 5, Field and event reference, for the definition and syntax of specific field
types.

See 4.7, Field, eventIn, and eventOut semantics, for a description of field statement semantics.

4.3.5 PROTO statement syntax

A PROTO statement consists of the PROTO keyword, followed in order by the prototype name, prototype interface
declaration, and prototype definition:

PROTO <name> [<declaration>] { <definition> }

See A.2, General, for details on prototype statement grammar rules.

A prototype interface declaration consists of eventIn, eventOut, field, and exposedField declarations (see 4.7, Field,
eventIn, and eventOut semantics) enclosed in square brackets. Whitespace is not required before or after the
brackets.

EventIn declarations consist of the keyword "eventIn" followed by an event type and a name:

eventIn <eventType> <name>

EventOut declarations consist of the keyword "eventOut" followed by an event type and a name:

eventOut <eventType> <name>

Field and exposedField declarations consist of either the keyword "field" or "exposedField" followed by a field type,
a name, and an initial field value of the given field type.

field <fieldType> <name> <initial field value>

exposedField <fieldType> <name> <initial field value>

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

26

Field, eventIn, eventOut, and exposedField names shall be unique in each PROTO statement, but are not required to
be unique between different PROTO statements. If a PROTO statement contains an exposedField with a given name
(e.g., zzz), it shall not contain eventIns or eventOuts with the prefix set_ or the suffix _changed and the given name
(e.g., set_zzz or zzz_changed).

A prototype definition consists of at least one node statement and any number of ROUTE statements, PROTO
statements, and EXTERNPROTO statements in any order.

See 4.8, Prototype semantics, for a description of prototype semantics.

4.3.6 IS statement syntax

The body of a node statement that is inside a prototype definition may contain IS statements. An IS statement
consists of the name of a field, exposedField, eventIn or eventOut from the node's public interface followed by the
keyword IS followed by the name of a field, exposedField, eventIn or eventOut from the prototype's interface
declaration:

<field/eventName> IS <field/eventName>

See A.3, Nodes, for details on prototype node body grammar rules. See 4.8, Prototype semantics, for a description of
IS statement semantics.

4.3.7 EXTERNPROTO statement syntax

An EXTERNPROTO statement consists of the EXTERNPROTO keyword followed in order by the prototype's
name, its interface declaration, and a list (possibly empty) of double-quoted strings enclosed in square brackets. If
there is only one member of the list, the brackets are optional.

EXTERNPROTO <name> [<external declaration>] URL or [URLs]

See A.2, General, for details on external prototype statement grammar rules.

An EXTERNPROTO interface declaration is the same as a PROTO interface declaration, with the exception that
field and exposedField initial values are not specified and the prototype definition is specified in a separate VRML
file to which the URL(s) refer.

4.3.8 USE statement syntax

A USE statement consists of the USE keyword followed by a node name:

USE <name>

See A.2, General, for details on USE statement grammar rules.

4.3.9 ROUTE statement syntax

A ROUTE statement consists of the ROUTE keyword followed in order by a node name, a period character, a field
name, the TO keyword, a node name, a period character, and a field name. Whitespace is allowed but not required
before or after the period characters:

ROUTE <name>.<field/eventName> TO <name>.<field/eventName>

See A.2, General, for details on ROUTE statement grammar rules.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

27

4.4 Scene graph structure

4.4.1 Root nodes

A VRML file contains zero or more root nodes. The root nodes for a VRML file are those nodes defined by the node
statements or USE statements that are not contained in other node or PROTO statements. Root nodes shall be
children nodes (see 4.6.5, Grouping and children nodes).

4.4.2 Scene graph hierarchy

A VRML file contains a directed acyclic graph. Node statements can contain SFNode or MFNode field statements
that, in turn, contain node (or USE) statements. This hierarchy of nodes is called the scene graph. Each arc in the
graph from A to B means that node A has an SFNode or MFNode field whose value directly contains node B. See
E.[FOLE] for details on hierarchical scene graphs.

4.4.3 Descendant and ancestor nodes

The descendants of a node are all of the nodes in its SFNode or MFNode fields, as well as all of those nodes'
descendants. The ancestors of a node are all of the nodes that have the node as a descendant.

4.4.4 Transformation hierarchy

The transformation hierarchy includes all of the root nodes and root node descendants that are considered to have
one or more particular locations in the virtual world. VRML includes the notion of local coordinate systems, defined
in terms of transformations from ancestor coordinate systems (using Transform or Billboard nodes). The coordinate
system in which the root nodes are displayed is called the world coordinate system.

A VRML browser's task is to present a VRML file to the user; it does this by presenting the transformation
hierarchy to the user. The transformation hierarchy describes the directly perceptible parts of the virtual world.

The following node types are in the scene graph but not affected by the transformation hierarchy: ColorInterpolator,
CoordinateInterpolator, NavigationInfo, NormalInterpolator, OrientationInterpolator, PositionInterpolator, Script,
ScalarInterpolator, TimeSensor, and WorldInfo. Of these, only Script nodes may have descendants. A descendant of
a Script node is not part of the transformation hierarchy unless it is also the descendant of another node that is part
of the transformation hierarchy or is a root node.

Nodes that are descendants of LOD or Switch nodes are affected by the transformation hierarchy, even if the settings
of a Switch node's whichChoice field or the position of the viewer with respect to a LOD node makes them
imperceptible.

The transformation hierarchy shall be a directed acyclic graph; results are undefined if a node in the transformation
hierarchy is its own ancestor.

4.4.5 Standard units and coordinate system

ISO/IEC 14772 defines the unit of measure of the world coordinate system to be metres. All other coordinate
systems are built from transformations based from the world coordinate system. Table 4.2 lists standard units for
ISO/IEC 14772.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

28

Table 4.2 -- Standard units

Category Unit

Linear distance Metres

Angles Radians

Time Seconds

Colour space RGB ([0.,1.], [0.,1.], [0., 1.])

ISO/IEC 14772 uses a Cartesian, right-handed, three-dimensional coordinate system. By default, the viewer is on the
Z-axis looking down the -Z-axis toward the origin with +X to the right and +Y straight up. A modelling
transformation (see 6.52, Transform, and 6.6, Billboard) or viewing transformation (see 6.53, Viewpoint) can be
used to alter this default projection.

4.4.6 Run-time name scope

Each VRML file defines a run-time name scope that contains all of the root nodes of the file and all of the
descendent nodes of the root nodes, with the exception of:

a. descendent nodes that are inside Inline nodes;

b. descendent nodes that are inside a prototype instance and are not part of the prototype's interface (i.e., are
not in an SF/MFNode field or eventOut of the prototype).

Each Inline node and prototype instance also defines a run-time name scope, consisting of all of the root nodes of
the file referred to by the Inline node or all of the root nodes of the prototype definition, restricted as above.

Nodes created dynamically (using a Script node invoking the Browser.createVrml methods) are not part of any name
scope, until they are added to the scene graph, at which point they become part of the same name scope of their
parent node(s). A node may be part of more than one run-time name scope. A node shall be removed from a name
scope when it is removed from the scene graph.

4.5 VRML and the World Wide Web

4.5.1 File extension and MIME types

The file extension for VRML files is .wrl (for world).

The official MIME type for VRML files is defined as:

model/vrml

where the MIME major type for 3D data descriptions is model, and the minor type for VRML documents is
vrml.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

29

For compatibility with earlier versions of VRML, the following MIME type shall also be supported:

x-world/x-vrml

where the MIME major type is x-world, and the minor type for VRML documents is x-vrml.

See E.[MIME] for details.

4.5.2 URLs

A URL (Uniform Resource Locator), described in 2.[URL], specifies a file located on a particular server and
accessed through a specified protocol (e.g., http). In ISO/IEC 14772, the upper-case term URL refers to a Uniform
Resource Locator, while the italicized lower-case version url refers to a field which may contain URLs or in-line
encoded data.

All url fields are of type MFString. The strings in these fields indicate multiple locations to search for data in
decreasing order of preference. If the browser cannot locate or interpret the data specified by the first location, it
shall try the second and subsequent locations in order until a URL containing interpretable data is encountered. If no
interpretable URL's are located, the node type defines the resultant default behaviour. The url field entries are
delimited by double quotation marks " ". Due to 4.5.4, Scripting language protocols, url fields use a superset of the
standard URL syntax defined in 2.[URL]. Details on the string field are located in 5.9, SFString and MFString.

More general information on URLs is described in 2.[URL].

4.5.3 Relative URLs

Relative URLs are handled as described in 2.[RURL]. The base document for EXTERNPROTO statements or nodes
that contain URL fields is:

a. The VRML file in which the prototype is instantiated, if the statement is part of a prototype definition.

b. The file containing the script code, if the statement is part of a string passed to the createVrmlFromURL()
or createVrmlFromString() browser calls in a Script node.

c. Otherwise, the VRML file from which the statement is read, in which case the RURL information provides
the data itself.

4.5.4 Scripting language protocols

The Script node's url field may also support custom protocols for the various scripting languages. For example, a
script url prefixed with javascript: shall contain ECMAScript source, with line terminators allowed in the string.
The details of each language protocol are defined in the annex for each language. Browsers are not required to
support any specific scripting language. However, browsers shall adhere to the protocol defined in the corresponding
annex of ISO/IEC 14772 for any scripting language which is supported. The following example illustrates the use of
mixing custom protocols and standard protocols in a single url field (order of precedence determines priority):

 #VRML V2.0 utf8
 Script {
 url ["javascript: ...", # custom protocol ECMAScript
 "http://bar.com/foo.js", # std protocol ECMAScript
 "http://bar.com/foo.class"] # std protocol Java platform bytecode
 }

In the example above, the "..." represents in-line ECMAScript source code.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

30

4.6 Node semantics

4.6.1 Introduction

Each node has the following characteristics:

a. A type name. Examples include Box, Color, Group, Sphere, Sound, or SpotLight.

b. Zero or more fields that define how each node differs from other nodes of the same type. Field values
are stored in the VRML file along with the nodes, and encode the state of the virtual world.

c. A set of events that it can receive and send. Each node may receive zero or more different kinds of events
which will result in some change to the node's state. Each node may also generate zero or more different
kinds of events to report changes in the node's state.

d. An implementation. The implementation of each node defines how it reacts to events it can receive, when
it generates events, and its visual or auditory appearance in the virtual world (if any). The VRML standard
defines the semantics of built-in nodes (i.e., nodes with implementations that are provided by the VRML
browser). The PROTO statement may be used to define new types of nodes, with behaviours defined in
terms of the behaviours of other nodes.

e. A name. Nodes can be named. This is used by other statements to reference a specific instantiation of a
node.

4.6.2 DEF/USE semantics

A node given a name using the DEF keyword may be referenced by name later in the same file with USE or
ROUTE statements. The USE statement does not create a copy of the node. Instead, the same node is inserted into
the scene graph a second time, resulting in the node having multiple parents. Using an instance of a node multiple
times is called instantiation.

Node names are limited in scope to a single VRML file, prototype definition, or string submitted to either the
CreateVrmlFromString browser extension or a construction mechanism for SFNodes within a script. Given a node
named "NewNode" (i.e., DEF NewNode), any "USE NewNode" statements in SFNode or MFNode fields inside
NewNode's scope refer to NewNode (see 4.4.4, Transformation hierarchy, for restrictions on self-referential nodes).

If multiple nodes are given the same name, each USE statement refers to the closest node with the given name
preceding it in either the VRML file or prototype definition.

4.6.3 Shapes and geometry

4.6.3.1 Introduction

The Shape node associates a geometry node with nodes that define that geometry's appearance. Shape nodes shall be
part of the transformation hierarchy to have any visible result, and the transformation hierarchy shall contain Shape
nodes for any geometry to be visible (the only nodes that render visible results are Shape nodes and the Background
node). A Shape node contains exactly one geometry node in its geometry field. The following node types are
geometry nodes:

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

31

• Box

• Cone

• Cylinder

• ElevationGrid

• Extrusion

• IndexedFaceSet

• IndexedLineSet

• PointSet

• Sphere

• Text

4.6.3.2 Geometric property nodes

Several geometry nodes contain Coordinate, Color, Normal, and TextureCoordinate as geometric property nodes.
The geometric property nodes are defined as individual nodes so that instancing and sharing is possible between
different geometry nodes.

4.6.3.3 Appearance nodes

Shape nodes may specify an Appearance node that describes the appearance properties (material and texture) to be
applied to the Shape's geometry. Nodes of the following type may be specified in the material field of the
Appearance node:

• Material

Nodes of the following types may be specified by the texture field of the Appearance node:

• ImageTexture

• PixelTexture

• MovieTexture

Nodes of the following types may be specified in the textureTransform field of the Appearance node:

• TextureTransform

The interaction between such appearance nodes and the Color node is described in 4.14, Lighting Model.

4.6.3.4 Shape hint fields

The Extrusion and IndexedFaceSet nodes each have three SFBool fields that provide hints about the geometry.
These hints specify the vertex ordering, if the shape is solid, and if the shape contains convex faces. These fields are
ccw, solid, and convex, respectively. The ElevationGrid node has the ccw and solid fields.

The ccw field defines the ordering of the vertex coordinates of the geometry with respect to user-given or
automatically generated normal vectors used in the lighting model equations. If ccw is TRUE, the normals shall
follow the right hand rule; the orientation of each normal with respect to the vertices (taken in order) shall be such
that the vertices appear to be oriented in a counterclockwise order when the vertices are viewed (in the local
coordinate system of the Shape) from the opposite direction as the normal. If ccw is FALSE, the normals shall be
oriented in the opposite direction. If normals are not generated but are supplied using a Normal node, and the
orientation of the normals does not match the setting of the ccw field, results are undefined.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

32

The solid field determines whether one or both sides of each polygon shall be displayed. If solid is FALSE, each
polygon shall be visible regardless of the viewing direction (i.e., no backface culling shall be done, and two-sided
lighting shall be performed to illuminate both sides of lit surfaces). If solid is TRUE, the visibility of each polygon
shall be determined as follows: Let V be the position of the viewer in the local coordinate system of the geometry.
Let N be the geometric normal vector of the polygon, and let P be any point (besides the local origin) in the plane
defined by the polygon's vertices. Then if (V dot N) - (N dot P) is greater than zero, the polygon shall be visible; if it
is less than or equal to zero, the polygon shall be invisible (backface culled).

The convex field indicates whether all polygons in the shape are convex (TRUE). A polygon is convex if it is planar,
does not intersect itself, and all of the interior angles at its vertices are less than 180 degrees. Non-planar and self-
intersecting polygons may produce undefined results even if the convex field is FALSE.

4.6.3.5 Crease angle field

The creaseAngle field, used by the ElevationGrid, Extrusion, and IndexedFaceSet nodes, affects how default
normals are generated. If the angle between the geometric normals of two adjacent faces is less than the crease
angle, normals shall be calculated so that the faces are smooth-shaded across the edge; otherwise, normals shall be
calculated so that a lighting discontinuity across the edge is produced. For example, a crease angle of 0.5 radians
means that an edge between two adjacent polygonal faces will be smooth shaded if the geometric normals of the two
faces form an angle that is less than 0.5 radians. Otherwise, the faces will appear faceted. Crease angles shall be
greater than or equal to 0.0.

4.6.4 Bounding boxes

Several of the nodes include a bounding box specification comprised of two fields, bboxSize and bboxCenter. A
bounding box is a rectangular parallelepiped of dimension bboxSize centred on the location bboxCenter in the local
coordinate system. This is typically used by grouping nodes to provide a hint to the browser on the group's
approximate size for culling optimizations. The default size for bounding boxes (-1, -1, -1) indicates that the user did
not specify the bounding box and the effect shall be as if the bounding box were infinitely large. A bboxSize value of
(0, 0, 0) is valid and represents a point in space (i.e., an infinitely small box). Specified bboxSize field values shall be
>= 0.0 or equal to (-1, -1, -1). The bboxCenter fields specify a position offset from the local coordinate system.

The bboxCenter and bboxSize fields may be used to specify a maximum possible bounding box for the objects inside
a grouping node (e.g., Transform). These are used as hints to optimize certain operations such as determining
whether or not the group needs to be drawn. The bounding box shall be large enough at all times to enclose the
union of the group's children's bounding boxes; it shall not include any transformations performed by the group
itself (i.e., the bounding box is defined in the local coordinate system of the children). Results are undefined if the
specified bounding box is smaller than the true bounding box of the group.

4.6.5 Grouping and children nodes

Grouping nodes have a field that contains a list of children nodes. Each grouping node defines a coordinate space for
its children. This coordinate space is relative to the coordinate space of the node of which the group node is a child.
Such a node is called a parent node. This means that transformations accumulate down the scene graph hierarchy.

The following node types are grouping nodes:

• Anchor

• Billboard

• Collision

• Group

• Inline

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

33

• LOD

• Switch

• Transform

The following node types are children nodes:

• Anchor

• Background

• Billboard

• Collision

• ColorInterpolator

• CoordinateInterpolator

• CylinderSensor

• DirectionalLight

• Fog

• Group

• Inline

• LOD

• NavigationInfo

• NormalInterpolator

• OrientationInterpolator

• PlaneSensor

• PointLight

• PositionInterpolator

• ProximitySensor

• ScalarInterpolator

• Script

• Shape

• Sound

• SpotLight

• SphereSensor

• Switch

• TimeSensor

• TouchSensor

• Transform

• Viewpoint

• VisibilitySensor

• WorldInfo

The following node types are not valid as children nodes:

• Appearance

• AudioClip

• Box

• Color

• Cone

• Coordinate

• Cylinder

• ElevationGrid

• Extrusion

• ImageTexture

• IndexedFaceSet

• IndexedLineSet

• Material

• MovieTexture

• Normal

• PointSet

• Sphere

• Text

• TextureCoordinate

• TextureTransform

All grouping nodes except Inline, LOD, and Switch also have addChildren and removeChildren eventIn definitions.
The addChildren event appends nodes to the grouping node's children field. Any nodes passed to the addChildren
event that are already in the group's children list are ignored. For example, if the children field contains the nodes Q,
L and S (in order) and the group receives an addChildren eventIn containing (in order) nodes A, L, and Z, the result
is a children field containing (in order) nodes Q, L, S, A, and Z.

The removeChildren event removes nodes from the grouping node's children field. Any nodes in the
removeChildren event that are not in the grouping node's children list are ignored. If the children field contains the
nodes Q, L, S, A and Z and it receives a removeChildren eventIn containing nodes A, L, and Z, the result is Q, S.

Note that a variety of node types reference other node types through fields. Some of these are parent-child
relationships, while others are not (there are node-specific semantics). Table 4.3 lists all node types that reference
other nodes through fields.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

34

Table 4.3 -- Nodes with SFNode or MFNode fields

Node Type Field Valid Node Types for Field

Anchor children Valid children nodes

Appearance material Material

texture ImageTexture, MovieTexture, Pixel Texture

Billboard children Valid children nodes

Collision children Valid children nodes

ElevationGrid color Color

normal Normal

texCoord TextureCoordinate

Group children Valid children nodes

IndexedFaceSet color Color

coord Coordinate

normal Normal

texCoord TextureCoordinate

IndexedLineSet color Color

coord Coordinate

LOD level Valid children nodes

Shape appearance Appearance

geometry Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet,
IndexedLineSet, PointSet, Sphere, Text

Sound source AudioClip, MovieTexture

Switch choice Valid children nodes

Text fontStyle FontStyle

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

35

Transform children Valid children nodes

4.6.6 Light sources

Shape nodes are illuminated by the sum of all of the lights in the world that affect them. This includes the
contribution of both the direct and ambient illumination from light sources. Ambient illumination results from the
scattering and reflection of light originally emitted directly by light sources. The amount of ambient light is
associated with the individual lights in the scene. This is a gross approximation to how ambient reflection actually
occurs in nature.

The following node types are light source nodes:

• DirectionalLight

• PointLight

• SpotLight

All light source nodes contain an intensity, a color, and an ambientIntensity field. The intensity field specifies the
brightness of the direct emission from the light, and the ambientIntensity specifies the intensity of the ambient
emission from the light. Light intensity may range from 0.0 (no light emission) to 1.0 (full intensity). The color field
specifies the spectral colour properties of both the direct and ambient light emission as an RGB value.

PointLight and SpotLight illuminate all objects in the world that fall within their volume of lighting influence
regardless of location within the transformation hierarchy. PointLight defines this volume of influence as a sphere
centred at the light (defined by a radius). SpotLight defines the volume of influence as a solid angle defined by a
radius and a cutoff angle. DirectionalLight nodes illuminate only the objects descended from the light's parent
grouping node, including any descendent children of the parent grouping nodes.

4.6.7 Sensor nodes

4.6.7.1 Introduction to sensors

The following node types are sensor nodes:

• Anchor

• Collision

• CylinderSensor

• PlaneSensor

• ProximitySensor

• SphereSensor

• TimeSensor

• TouchSensor

• VisibilitySensor

Sensors are children nodes in the hierarchy and therefore may be parented by grouping nodes as described in
4.6.5, Grouping and children nodes.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

36

Each type of sensor defines when an event is generated. The state of the scene graph after several sensors have
generated events shall be as if each event is processed separately, in order. If sensors generate events at the same
time, the state of the scene graph will be undefined if the results depend on the ordering of the events.

It is possible to create dependencies between various types of sensors. For example, a TouchSensor may result in a
change to a VisibilitySensor node's transformation, which in turn may cause the VisibilitySensor node's visibility
status to change.

The following two sections classify sensors into two categories: environmental sensors and pointing-device sensors.

4.6.7.2 Environmental sensors

The following node types are environmental sensors:

• Collision

• ProximitySensor

• TimeSensor

• VisibilitySensor

The ProximitySensor detects when the user navigates into a specified region in the world. The ProximitySensor
itself is not visible. The TimeSensor is a clock that has no geometry or location associated with it; it is used to start
and stop time-based nodes such as interpolators. The VisibilitySensor detects when a specific part of the world
becomes visible to the user. The Collision grouping node detects when the user collides with objects in the virtual
world. Proximity, time, collision, and visibility sensors are each processed independently of whether others exist or
overlap.

When environmental sensors are inserted into the transformation hierarchy and before the presentation is updated
(i.e., read from file or created by a script), they shall generate events indicating any conditions which the sensor is
intended to detect (see 4.10.3, Execution model). The conditions for individual sensor types to generate these initial
events are defined in the individual node specifications in 6, Node reference.

4.6.7.3 Pointing-device sensors

Pointing-device sensors detect user pointing events such as the user clicking on a piece of geometry
(i.e., TouchSensor). The following node types are pointing-device sensors:

• Anchor

• CylinderSensor

• PlaneSensor

• SphereSensor

• TouchSensor

A pointing-device sensor is activated when the user locates the pointing device over geometry that is influenced by
that specific pointing-device sensor. Pointing-device sensors have influence over all geometry that is descended
from the sensor's parent groups. In the case of the Anchor node, the Anchor node itself is considered to be the parent
group. Typically, the pointing-device sensor is a sibling to the geometry that it influences. In other cases, the sensor
is a sibling to groups which contain geometry (i.e., are influenced by the pointing-device sensor).

The appearance properties of the geometry do not affect activation of the sensor. In particular, transparent materials
or textures shall be treated as opaque with respect to activation of pointing-device sensors.

For a given user activation, the lowest enabled pointing-device sensor in the hierarchy is activated. All other
pointing-device sensors above the lowest enabled pointing-device sensor are ignored. The hierarchy is defined by

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

37

the geometry node over which the pointing-device sensor is located and the entire hierarchy upward. If there are
multiple pointing-device sensors tied for lowest, each of these is activated simultaneously and independently,
possibly resulting in multiple sensors activating and generating output simultaneously. This feature allows
combinations of pointing-device sensors (e.g., TouchSensor and PlaneSensor). If a pointing-device sensor appears in
the transformation hierarchy multiple times (DEF/USE), it shall be tested for activation in all of the coordinate
systems in which it appears.

If a pointing-device sensor is not enabled when the pointing-device button is activated, it will not generate events
related to the pointing device until after the pointing device is deactivated and the sensor is enabled (i.e., enabling a
sensor in the middle of dragging does not result in the sensor activating immediately).

The Anchor node is considered to be a pointing-device sensor when trying to determine which sensor (or Anchor
node) to activate. For example, a click on Shape3 is handled by SensorD, a click on Shape2 is handled by SensorC
and the AnchorA, and a click on Shape1 is handled by SensorA and SensorB:

 Group {
 children [
 DEF Shape1 Shape { ... }
 DEF SensorA TouchSensor { ... }
 DEF SensorB PlaneSensor { ... }
 DEF AnchorA Anchor {
 url "..."
 children [
 DEF Shape2 Shape { ... }
 DEF SensorC TouchSensor { ... }
 Group {
 children [
 DEF Shape3 Shape { ... }
 DEF SensorD TouchSensor { ... }
]
 }
]
 }
]
 }

4.6.7.4 Drag sensors

Drag sensors are a subset of pointing-device sensors. There are three types of drag sensors: CylinderSensor,
PlaneSensor, and SphereSensor. Drag sensors have two eventOuts in common, trackPoint_changed and
<value>_changed. These eventOuts send events for each movement of the activated pointing device according to
their "virtual geometry" (e.g., cylinder for CylinderSensor). The trackPoint_changed eventOut sends the intersection
point of the bearing with the drag sensor's virtual geometry. The <value>_changed eventOut sends the sum of the
relative change since activation plus the sensor's offset field. The type and name of <value>_changed depends on
the drag sensor type: rotation_changed for CylinderSensor, translation_changed for PlaneSensor, and
rotation_changed for SphereSensor.

To simplify the application of these sensors, each node has an offset and an autoOffset exposed field. When the
sensor generates events as a response to the activated pointing device motion, <value>_changed sends the sum of
the relative change since the initial activation plus the offset field value. If autoOffset is TRUE when the pointing-
device is deactivated, the offset field is set to the sensor's last <value>_changed value and offset sends an
offset_changed eventOut. This enables subsequent grabbing operations to accumulate the changes. If autoOffset is
FALSE, the sensor does not set the offset field value at deactivation (or any other time).

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

38

4.6.7.5 Activating and manipulating sensors

The pointing device controls a pointer in the virtual world. While activated by the pointing device, a sensor will
generate events as the pointer moves. Typically the pointing device may be categorized as either 2D (e.g.,
conventional mouse) or 3D (e.g., wand). It is suggested that the pointer controlled by a 2D device is mapped onto a
plane a fixed distance from the viewer and perpendicular to the line of sight. The mapping of a 3D device may
describe a 1:1 relationship between movement of the pointing device and movement of the pointer.

The position of the pointer defines a bearing which is used to determine which geometry is being indicated. When
implementing a 2D pointing device it is suggested that the bearing is defined by the vector from the viewer position
through the location of the pointer. When implementing a 3D pointing device it is suggested that the bearing is
defined by extending a vector from the current position of the pointer in the direction indicated by the pointer.

In all cases the pointer is considered to be indicating a specific geometry when that geometry is intersected by the
bearing. If the bearing intersects multiple sensors' geometries, only the sensor nearest to the pointer will be eligible
for activation.

4.6.8 Interpolator nodes

Interpolator nodes are designed for linear keyframed animation. An interpolator node defines a piecewise-linear
function, f(t), on the interval (-infinity, +infinity). The piecewise-linear function is defined by n values of t, called
key, and the n corresponding values of f(t), called keyValue. The keys shall be monotonically non-decreasing,
otherwise the results are undefined. The keys are not restricted to any interval.

An interpolator node evaluates f(t) given any value of t (via the set_fraction eventIn) as follows: Let the n keys t0,
t1, t2, ..., tn-1 partition the domain (-infinity, +infinity) into the n+1 subintervals given by (-infinity, t0), [t0, t1), [t1, t2),
... , [tn-1, +infinity). Also, let the n values v0, v1, v2, ..., vn-1 be the values of f(t) at the associated key values. The
piecewise-linear interpolating function, f(t), is defined to be

 f(t) = v0, if t <= t0,
 = vn-1, if t >= tn-1,
 = linterp(t, vi, vi+1), if ti <= t <= ti+1

 where linterp(t,x,y) is the linear interpolant,
i belongs to {0,1,..., n-2}.

The third conditional value of f(t) allows the defining of multiple values for a single key, (i.e., limits from both the
left and right at a discontinuity in f(t)). The first specified value is used as the limit of f(t) from the left, and the last
specified value is used as the limit of f(t) from the right. The value of f(t) at a multiply defined key is indeterminate,
but should be one of the associated limit values.

The following node types are interpolator nodes, each based on the type of value that is interpolated:

• ColorInterpolator

• CoordinateInterpolator

• NormalInterpolator

• OrientationInterpolator

• PositionInterpolator

• ScalarInterpolator

All interpolator nodes share a common set of fields and semantics:

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

39

 eventIn SFFloat set_fraction
 exposedField MFFloat key [...]
 exposedField MF<type> keyValue [...]
 eventOut [S|M]F<type> value_changed

The type of the keyValue field is dependent on the type of the interpolator (e.g., the ColorInterpolator's keyValue
field is of type MFColor).

The set_fraction eventIn receives an SFFloat event and causes the interpolator function to evaluate, resulting in a
value_changed eventOut with the same timestamp as the set_fraction event.

ColorInterpolator, OrientationInterpolator, PositionInterpolator, and ScalarInterpolator output a single-value field to
value_changed. Each value in the keyValue field corresponds in order to the parameter value in the key field. Results
are undefined if the number of values in the key field of an interpolator is not the same as the number of values in
the keyValue field.

CoordinateInterpolator and NormalInterpolator send multiple-value results to value_changed. In this case, the
keyValue field is an n x m array of values, where n is the number of values in the key field and m is the number of
values at each keyframe. Each m values in the keyValue field correspond, in order, to a parameter value in the key
field. Each value_changed event shall contain m interpolated values. Results are undefined if the number of values
in the keyValue field divided by the number of values in the key field is not a positive integer.

If an interpolator node's value eventOut is read before it receives any inputs, keyValue[0] is returned if keyValue is
not empty. If keyValue is empty (i.e., []), the initial value for the eventOut type is returned (e.g., (0, 0, 0) for
SFVec3f); see 5, Field and event reference, for initial event values.

The location of an interpolator node in the transformation hierarchy has no effect on its operation. For example, if a
parent of an interpolator node is a Switch node with whichChoice set to -1 (i.e., ignore its children), the interpolator
continues to operate as specified (receives and sends events).

4.6.9 Time-dependent nodes

AudioClip, MovieTexture, and TimeSensor are time-dependent nodes that activate and deactivate themselves at
specified times. Each of these nodes contains the exposedFields: startTime, stopTime, and loop, and the eventOut:
isActive. The values of the exposedFields are used to determine when the node becomes active or inactive Also,
under certain conditions, these nodes ignore events to some of their exposedFields. A node ignores an eventIn by not
accepting the new value and not generating an eventOut_changed event. In this subclause, an abstract time-
dependent node can be any one of AudioClip, MovieTexture, or TimeSensor.

Time-dependent nodes can execute for 0 or more cycles. A cycle is defined by field data within the node. If, at the
end of a cycle, the value of loop is FALSE, execution is terminated (see below for events at termination).
Conversely, if loop is TRUE at the end of a cycle, a time-dependent node continues execution into the next cycle. A
time-dependent node with loop TRUE at the end of every cycle continues cycling forever if startTime >= stopTime,
or until stopTime if startTime < stopTime.

A time-dependent node generates an isActive TRUE event when it becomes active and generates an isActive FALSE
event when it becomes inactive. These are the only times at which an isActive event is generated. In particular,
isActive events are not sent at each tick of a simulation.

A time-dependent node is inactive until its startTime is reached. When time now becomes greater than or equal to
startTime, an isActive TRUE event is generated and the time-dependent node becomes active (now refers to the time
at which the browser is simulating and displaying the virtual world). When a time-dependent node is read from a
VRML file and the ROUTEs specified within the VRML file have been established, the node should determine if it
is active and, if so, generate an isActive TRUE event and begin generating any other necessary events. However, if a
node would have become inactive at any time before the reading of the VRML file, no events are generated upon the
completion of the read.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

40

An active time-dependent node will become inactive when stopTime is reached if stopTime > startTime. The value
of stopTime is ignored if stopTime <= startTime. Also, an active time-dependent node will become inactive at the
end of the current cycle if loop is FALSE. If an active time-dependent node receives a set_loop FALSE event,
execution continues until the end of the current cycle or until stopTime (if stopTime > startTime), whichever occurs
first. The termination at the end of cycle can be overridden by a subsequent set_loop TRUE event.

Any set_startTime events to an active time-dependent node are ignored. Any set_stopTime event where stopTime <=
startTime sent to an active time-dependent node is also ignored. A set_stopTime event where
startTime < stopTime <= now sent to an active time-dependent node results in events being generated as if stopTime
has just been reached. That is, final events, including an isActive FALSE, are generated and the node becomes
inactive. The stopTime_changed event will have the set_stopTime value. Other final events are node-dependent
(c.f., TimeSensor).

A time-dependent node may be restarted while it is active by sending a set_stopTime event equal to the current time
(which will cause the node to become inactive) and a set_startTime event, setting it to the current time or any time in
the future. These events will have the same time stamp and should be processed as set_stopTime, then set_startTime
to produce the correct behaviour.

The default values for each of the time-dependent nodes are specified such that any node with default values is
already inactive (and, therefore, will generate no events upon loading). A time-dependent node can be defined such
that it will be active upon reading by specifying loop TRUE. This use of a non-terminating time-dependent node
should be used with caution since it incurs continuous overhead on the simulation.

Figure 4.2 illustrates the behavior of several common cases of time-dependent nodes. In each case, the initial
conditions of startTime, stopTime, loop, and the time-dependent node's cycle interval are labelled, the red region
denotes the time period during which the time-dependent node is active, the arrows represent eventIns received by
and eventOuts sent by the time-dependent node, and the horizontal axis represents time.

4.6.10 Bindable children nodes

The Background, Fog, NavigationInfo, and Viewpoint nodes have the unique behaviour that only one of each type
can be bound (i.e., affecting the user's experience) at any instant in time. The browser shall maintain an independent,
separate stack for each type of bindable node. Each of these nodes includes a set_bind eventIn and an isBound
eventOut. The set_bind eventIn is used to move a given node to and from its respective top of stack. A TRUE value
sent to the set_bind eventIn moves the node to the top of the stack; sending a FALSE value removes it from the
stack. The isBound event is output when a given node is:

a. moved to the top of the stack;

b. removed from the top of the stack;

c. pushed down from the top of the stack by another node being placed on top.

That is, isBound events are sent when a given node becomes, or ceases to be, the active node. The node at the top of
stack, (the most recently bound node), is the active node for its type and is used by the browser to set the world state.
If the stack is empty (i.e., either the VRML file has no bindable nodes for a given type or the stack has been popped
until empty), the default field values for that node type are used to set world state. The results are undefined if a
multiply instanced (DEF/USE) bindable node is bound.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

41

Figure 4.2 -- Examples of time-dependent node execution

The following rules describe the behaviour of the binding stack for a node of type <bindable node>, (Background,
Fog, NavigationInfo, or Viewpoint):

a. During read, the first encountered <bindable node> is bound by pushing it to the top of the <bindable
node> stack. Nodes contained within Inlines, within the strings passed to the
Browser.createVrmlFromString() method, or within VRML files passed to the
Browser.createVrmlFromURL() method (see 4.12.10, Browser script interface)are not candidates for the
first encountered <bindable node>. The first node within a prototype instance is a valid candidate for the
first encountered <bindable node>. The first encountered <bindable node> sends an isBound TRUE event.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

42

b. When a set_bind TRUE event is received by a <bindable node>,

1. If it is not on the top of the stack: the current top of stack node sends an isBound FALSE event.
The new node is moved to the top of the stack and becomes the currently bound <bindable node>.
The new <bindable node> (top of stack) sends an isBound TRUE event.

2. If the node is already at the top of the stack, this event has no effect.

c. When a set_bind FALSE event is received by a <bindable node> in the stack, it is removed from the stack.
If it was on the top of the stack,

1. it sends an isBound FALSE event;

2. the next node in the stack becomes the currently bound <bindable node> (i.e., pop) and issues an
isBound TRUE event.

d. If a set_bind FALSE event is received by a node not in the stack, the event is ignored and isBound events
are not sent.

e. When a node replaces another node at the top of the stack, the isBound TRUE and FALSE eventOuts from
the two nodes are sent simultaneously (i.e., with identical timestamps).

f. If a bound node is deleted, it behaves as if it received a set_bind FALSE event (see f above).

4.6.11 Texture maps

4.6.11.1 Texture map formats

Four node types specify texture maps: Background, ImageTexture, MovieTexture, and PixelTexture. In all cases,
texture maps are defined by 2D images that contain an array of colour values describing the texture. The texture map
values are interpreted differently depending on the number of components in the texture map and the specifics of the
image format. In general, texture maps may be described using one of the following forms:

a. Intensity textures (one-component)

b. Intensity plus alpha opacity textures (two-component)

c. Full RGB textures (three-component)

d. Full RGB plus alpha opacity textures (four-component)

Note that most image formats specify an alpha opacity, not transparency (where alpha = 1 - transparency).

See Table 4.5 and Table 4.6 for a description of how the various texture types are applied.

4.6.11.2 Texture map image formats

Texture nodes that require support for the PNG (see 2.[PNG]) image format (6.5, Background, and
6.22, ImageTexture) shall interpret the PNG pixel formats in the following way:

a. Greyscale pixels without alpha or simple transparency are treated as intensity textures.

b. Greyscale pixels with alpha or simple transparency are treated as intensity plus alpha textures.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

43

c. RGB pixels without alpha channel or simple transparency are treated as full RGB textures.

d. RGB pixels with alpha channel or simple transparency are treated as full RGB plus alpha textures.

If the image specifies colours as indexed-colour (i.e., palettes or colourmaps), the following semantics should be
used (note that `greyscale' refers to a palette entry with equal red, green, and blue values):

a. If all the colours in the palette are greyscale and there is no transparency chunk, it is treated as an intensity
texture.

b. If all the colours in the palette are greyscale and there is a transparency chunk, it is treated as an intensity
plus opacity texture.

c. If any colour in the palette is not grey and there is no transparency chunk, it is treated as a full RGB texture.

d. If any colour in the palette is not grey and there is a transparency chunk, it is treated as a full RGB plus
alpha texture.

Texture nodes that require support for JPEG files (see 2.[JPEG], 6.5, Background, and 6.22, ImageTexture) shall
interpret JPEG files as follows:

i. Greyscale files (number of components equals 1) are treated as intensity textures.

j. YCbCr files are treated as full RGB textures.

k. No other JPEG file types are required. It is recommended that other JPEG files are treated as a full RGB
textures.

Texture nodes that support MPEG files (see 2.[MPEG] and 6.28, MovieTexture) shall treat MPEG files as full RGB
textures.

Texture nodes that recommend support for GIF files (see E.[GIF], 6.5, Background, and 6.22, ImageTexture) shall
follow the applicable semantics described above for the PNG format.

4.7 Field, eventIn, and eventOut semantics
Fields are placed inside node statements in a VRML file, and define the persistent state of the virtual world. Results
are undefined if multiple values for the same field in the same node (e.g., Sphere { radius 1.0 radius
2.0 }) are declared.

EventIns and eventOuts define the types and names of events that each type of node may receive or generate. Events
are transient and event values are not written to VRML files. Each node interprets the values of the events sent to it
or generated by it according to its implementation.

Field, eventIn, and eventOut types, and field encoding syntax, are described in 5, Field and event reference.

An exposedField can receive events like an eventIn, can generate events like an eventOut, and can be stored in
VRML files like a field. An exposedField named zzz can be referred to as 'set_zzz' and treated as an eventIn, and can
be referred to as 'zzz_changed' and treated as an eventOut. The initial value of an exposedField is its value in the
VRML file, or the default value for the node in which it is contained, if a value is not specified. When an
exposedField receives an event it shall generate an event with the same value and timestamp. The following sources,
in precedence order, shall be used to determine the initial value of the exposedField:

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

44

a. the user-defined value in the instantiation (if one is specified);

b. the default value for that field as specified in the node or prototype definition.

The rules for naming fields, exposedFields, eventOuts, and eventIns for the built-in nodes are as follows:

c. All names containing multiple words start with a lower case letter, and the first letter of all subsequent
words is capitalized (e.g., addChildren), with the exception of set_ and _changed, as described below.

d. All eventIns have the prefix "set_", with the exception of the addChildren and removeChildren eventIns.

e. Certain eventIns and eventOuts of type SFTime do not use the "set_" prefix or "_changed" suffix.

f. All other eventOuts have the suffix "_changed" appended, with the exception of eventOuts of type SFBool.
Boolean eventOuts begin with the word "is" (e.g., isFoo) for better readability.

4.8 Prototype semantics

4.8.1 Introduction

The PROTO statement defines a new node type in terms of already defined (built-in or prototyped) node types. Once
defined, prototyped node types may be instantiated in the scene graph exactly like the built-in node types.

Node type names shall be unique in each VRML file. The results are undefined if a prototype is given the same
name as a built-in node type or a previously defined prototype in the same scope.

4.8.2 PROTO interface declaration semantics

The prototype interface defines the fields, eventIns, and eventOuts for the new node type. The interface declaration
includes the types and names for the eventIns and eventOuts of the prototype, as well as the types, names, and
default values for the prototype's fields.

The interface declaration may contain exposedField declarations, which are a convenient way of defining a field,
eventIn, and eventOut at the same time. If an exposedField named zzz is declared, it is equivalent to declaring a field
named zzz, an eventIn named set_zzz, and an eventOut named zzz_changed.

Each prototype instance can be considered to be a complete copy of the prototype, with its own fields, events, and
copy of the prototype definition. A prototyped node type is instantiated using standard node syntax. For example,
the following prototype (which has an empty interface declaration):

PROTO Cube [] { Box { } }

may be instantiated as follows:

Shape { geometry Cube { } }

It is recommended that user-defined field or event names defined in PROTO interface declarations statements follow
the naming conventions described in 4.7, Field, eventIn, and eventOut semantics.

If an eventOut in the prototype declaration is associated with an exposedField in the prototype definition, the initial
value of the eventOut shall be the initial value of the exposedField. If the eventOut is associated with multiple
exposedFields, the results are undefined.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

45

4.8.3 PROTO definition semantics

A prototype definition consists of one or more nodes, nested PROTO statements, and ROUTE statements. The first
node type determines how instantiations of the prototype can be used in a VRML file. An instantiation is created by
filling in the parameters of the prototype declaration and inserting copies of the first node (and its scene graph)
wherever the prototype instantiation occurs. For example, if the first node in the prototype definition is a Material
node, instantiations of the prototype can be used wherever a Material node can be used. Any other nodes and
accompanying scene graphs are not part of the transformation hierarchy, but may be referenced by ROUTE
statements or Script nodes in the prototype definition.

Nodes in the prototype definition may have their fields, eventIns, or eventOuts associated with the fields, eventIns,
and eventOuts of the prototype interface declaration. This is accomplished using IS statements in the body of the
node. When prototype instances are read from a VRML file, field values for the fields of the prototype interface may
be given. If given, the field values are used for all nodes in the prototype definition that have IS statements for those
fields. Similarly, when a prototype instance is sent an event, the event is delivered to all nodes that have IS
statements for that event. When a node in a prototype instance generates an event that has an IS statement, the event
is sent to any eventIns connected (via ROUTE) to the prototype instance's eventOut.

IS statements may appear inside the prototype definition wherever fields may appear. IS statements shall refer to
fields or events defined in the prototype declaration. Results are undefined if an IS statement refers to a non-existent
declaration. Results are undefined if the type of the field or event being associated by the IS statement does not
match the type declared in the prototype's interface declaration. For example, it is illegal to associate an SFColor
with an SFVec3f. It is also illegal to associate an SFColor with an MFColor or vice versa.

Results are undefined if an IS statement:

• eventIn is associated with a field or an eventOut;

• eventOut is associated with a field or eventIn;

• field is associated with an eventIn or eventOut.

An exposedField in the prototype interface may be associated only with an exposedField in the prototype definition,
but an exposedField in the prototype definition may be associated with either a field, eventIn, eventOut or
exposedField in the prototype interface. When associating an exposedField in a prototype definition with an eventIn
or eventOut in the prototype declaration, it is valid to use either the shorthand exposedField name (e.g., translation)
or the explicit event name (e.g., set_translation or translation_changed). Table 4.4 defines the rules for mapping
between the prototype declarations and the primary scene graph's nodes (yes denotes a legal mapping, no denotes an
error).

Table 4.4 -- Rules for mapping PROTOTYPE declarations to node instances

 Prototype declaration

exposedField field eventIn eventOut

exposedField yes yes yes yes

field no yes no no

eventIn no no yes no

Prototype

definition

eventOut no no no yes

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

46

Results are undefined if a field, eventIn, or eventOut of a node in the prototype definition is associated with more
than one field, eventIn, or eventOut in the prototype's interface (i.e., multiple IS statements for a field, eventIn, and
eventOut in a node in the prototype definition), but multiple IS statements for the fields, eventIns, and eventOuts in
the prototype interface declaration is valid. Results are undefined if a field of a node in a prototype definition is both
defined with initial values (i.e., field statement) and associated by an IS statement with a field in the prototype's
interface. If a prototype interface has an eventOut E associated with multiple eventOuts in the prototype definition
ED i , the value of E is the value of the eventOut that generated the event with the greatest timestamp. If two or more
of the eventOuts generated events with identical timestamps, results are undefined.

4.8.4 Prototype scoping rules

Prototype definitions appearing inside a prototype definition (i.e., nested) are local to the enclosing prototype. IS
statements inside a nested prototype's implementation may refer to the prototype declarations of the innermost
prototype.

A PROTO statement establishes a DEF/USE name scope separate from the rest of the scene and separate from any
nested PROTO statements. Nodes given a name by a DEF construct inside the prototype may not be referenced in a
USE construct outside of the prototype's scope. Nodes given a name by a DEF construct outside the prototype scope
may not be referenced in a USE construct inside the prototype scope.

A prototype may be instantiated in a file anywhere after the completion of the prototype definition. A prototype may
not be instantiated inside its own implementation (i.e., recursive prototypes are illegal).

4.9 External prototype semantics

4.9.1 Introduction

The EXTERNPROTO statement defines a new node type. It is equivalent to the PROTO statement, with two
exceptions. First, the implementation of the node type is stored externally, either in a VRML file containing an
appropriate PROTO statement or using some other implementation-dependent mechanism. Second, default values
for fields are not given since the implementation will define appropriate defaults.

4.9.2 EXTERNPROTO interface semantics

The semantics of the EXTERNPROTO are exactly the same as for a PROTO statement, except that default field and
exposedField values are not specified locally. In addition, events sent to an instance of an externally prototyped node
may be ignored until the implementation of the node is found.

Until the definition has been loaded, the browser shall determine the initial value of exposedFields using the
following rules (in order of precedence):

a. the user-defined value in the instantiation (if one is specified);

b. the default value for that field type.

For eventOuts, the initial value on startup will be the default value for that field type. During the loading of an
EXTERNPROTO, if an initial value of an eventOut is found, that value is applied to the eventOut and no event is
generated.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

47

The names and types of the fields, exposedFields, eventIns, and eventOuts of the interface declaration shall be a
subset of those defined in the implementation. Declaring a field or event with a non-matching name is an error, as is
declaring a field or event with a matching name but a different type.

It is recommended that user-defined field or event names defined in EXTERNPROTO interface statements follow
the naming conventions described in 4.7, Field, eventIn, and eventOut semantics.

4.9.3 EXTERNPROTO URL semantics

The string or strings specified after the interface declaration give the location of the prototype's implementation. If
multiple strings are specified, the browser searches in the order of preference (see 4.5.2, URLs).

If a URL in an EXTERNPROTO statement refers to a VRML file, the first PROTO statement found in the VRML
file (excluding EXTERNPROTOs) is used to define the external prototype's definition. The name of that prototype
does not need to match the name given in the EXTERNPROTO statement. Results are undefined if a URL in an
EXTERNPROTO statement refers to a non-VRML file

To enable the creation of libraries of reusable PROTO definitions, browsers shall recognize EXTERNPROTO URLs
that end with "#name" to mean the PROTO statement for "name" in the given VRML file. For example, a library of
standard materials might be stored in a VRML file called "materials.wrl" that looks like:

 #VRML V2.0 utf8
 PROTO Gold [] { Material { ... } }
 PROTO Silver [] { Material { ... } }
 ...etc.

A material from this library could be used as follows:

 #VRML V2.0 utf8
 EXTERNPROTO GoldFromLibrary [] "http://.../materials.wrl#Gold"
 ...
 Shape {
 appearance Appearance { material GoldFromLibrary {} }
 geometry ...
 }
 ...

4.10 Event processing

4.10.1 Introduction

Most node types have at least one eventIn definition and thus can receive events. Incoming events are data messages
sent by other nodes to change some state within the receiving node. Some nodes also have eventOut definitions.
These are used to send data messages to destination nodes that some state has changed within the source node.

If an eventOut is read before it has sent any events, the initial value as specified in 5, Field and event reference, for
each field/event type is returned.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

48

4.10.2 Route semantics

The connection between the node generating the event and the node receiving the event is called a route. Routes are
not nodes. The ROUTE statement is a construct for establishing event paths between nodes. ROUTE statements may
either appear at the top level of a VRML file, in a prototype definition, or inside a node wherever fields may appear.
Nodes referenced in a ROUTE statement shall be defined before the ROUTE statement.

The types of the eventIn and the eventOut shall match exactly. For example, it is illegal to route from an SFFloat to
an SFInt32 or from an SFFloat to an MFFloat.

Routes may be established only from eventOuts to eventIns. For convenience, when routing to or from an eventIn or
eventOut (or the eventIn or eventOut part of an exposedField), the set_ or _changed part of the event's name is
optional. If the browser is trying to establish a ROUTE to an eventIn named zzz and an eventIn of that name is not
found, the browser shall then try to establish the ROUTE to the eventIn named set_zzz. Similarly, if establishing a
ROUTE from an eventOut named zzz and an eventOut of that name is not found, the browser shall try to establish
the ROUTE from zzz_changed.

Redundant routing is ignored. If a VRML file repeats a routing path, the second and subsequent identical routes are
ignored. This also applies for routes created dynamically via a scripting language supported by the browser.

4.10.3 Execution model

Once a sensor or Script has generated an initial event, the event is propagated from the eventOut producing the event
along any ROUTEs to other nodes. These other nodes may respond by generating additional events, continuing until
all routes have been honoured. This process is called an event cascade. All events generated during a given event
cascade are assigned the same timestamp as the initial event, since all are considered to happen instantaneously.

Some sensors generate multiple events simultaneously. Similarly, it is possible that asynchronously generated events
could arrive at the identical time as one or more sensor generated event. In these cases, all events generated are part
of the same initial event cascade and each event has the same timestamp.

After all events of the initial event cascade are honored, post-event processing performs actions stimulated by the
event cascade. The entire sequence of events occuring in a single timestamp are:

a. Perform event cascade evaluation.

b. Call shutdown() on scripts that have received set_url events or are being removed from the scene.

c. Send final events from environmental sensors being removed from the transformation hierarchy.

d. Add or remove routes specified in addRoute() or deleteRoute() from any script execution in the
preceeding event cascade.

e. Call eventsProcessed() for scripts that have sent events in the just ended event cascade.

f. Send initial events from any dynamically created environmental sensors.

g. Call initialize() of newly loaded script code.

h. If any events were generated from steps 2 through 7, go to step 2 and continue.

Figure 4.3 provides a conceptual illustration of the execution model.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

49

Figure 4.3 -- Conceptual execution model

Nodes that contain eventOuts or exposedFields shall produce at most one event per timestamp. If a field is
connected to another field via a ROUTE, an implementation shall send only one event per ROUTE per timestamp.
This also applies to scripts where the rules for determining the appropriate action for sending eventOuts are defined
in 4.12.9.3, Sending eventOuts.

D.19, Execution model, provides an example that demonstrates the execution model. Figure 4.4 illustrates event
processing for a single timestamp in example in D.19, Execution model:

Figure 4.4 -- Example D.19, event processing order

In Figure 4.4, arrows coming out of a script at ep are events generated during the eventsProcessed() call for the
script. The other arrows are events sent during an eventIn method. One possible compliant order of execution is as
follows:

i. User activates TouchSensor

j. Run initial event cascade (step 1)

1. Script 1 runs, generates an event for Script 2

2. Script 2 runs

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

50

3. end of initial event cascade

k. Execute eventsProcessed calls (step 5)

1. eventsProcessed for Script 1 runs, sends event to Script 3

2. Script 3 runs, generates events for Script 5

3. Script 5 runs

4. eventsProcessed for Script 2 runs, sends events to Script 4

5. Script 4 runs

6. end of eventsProcessed processing

l. Go to step 2 for generated events (step 8)

m. Execute eventsProcessed calls (step 5)

1. eventsProcessed for Script 3 runs, sends event to Script 6

2. Script 6 runs, sends event to Script 7

3. Script 7 runs

4. eventsProcessed for Script 4 runs, does not generate any events

5. eventsProcessed for Script 5 runs, does not generate any events

6. end of eventsProcessed processing

n. Go to step 2 for generated events (step 8)

o. Execute eventsProcessed calls (step 5)

1. eventsProcessed for Script 6 runs, does not generate any events

2. eventsProcessed for Script 7 runs, does not generate any events

3. end of eventsProcessed processing

p. No more events to handle.

The above is not the only possible compliant order of execution. If multiple eventsProcessed() methods are pending
when step 4 is executed, the order in which these methods is called is not defined. For instance, in the third step of
the example, the eventsProcessed method is pending for both Script 1 and Script 2. The order of execution in this
case is not defined, so executing the eventsProcessed method of Script 2 before that of Script 1 would have been
compliant. However, executing the eventsProcessed method for Script 3 before that of Script 2 would not have
been compliant because any methods made pending during processing must wait until the next iteration of the event
cascade for execution.

4.10.4 Loops

Event cascades may contain loops where an event E is routed to a node that generates an event that eventually
results in E being generated again. See 4.10.3, Execution model, for the loop breaking rule that limits each eventOut
to one event per timestamp. This rule shall also be used to break loops created by cyclic dependencies between
different sensor nodes.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

51

4.10.5 Fan-in and fan-out

Fan-in occurs when two or more routes write to the same eventIn. Events coming into an eventIn from different
eventOuts with the same timestamp shall be processed, but the order of evaluation is implementation dependent.

Fan-out occurs when one eventOut routes to two or more eventIns. This results in sending any event generated by
the eventOut to all of the eventIns.

4.11 Time

4.11.1 Introduction

The browser controls the passage of time in a world by causing TimeSensors to generate events as time passes.
Specialized browsers or authoring applications may cause time to pass more quickly or slowly than in the real world,
but typically the times generated by TimeSensors will approximate "real" time. A world's creator should make no
assumptions about how often a TimeSensor will generate events but can safely assume that each time event
generated will have a timestamp greater than any previous time event.

4.11.2 Time origin

Time (0.0) is equivalent to 00:00:00 GMT January 1, 1970. Absolute times are specified in SFTime or MFTime
fields as double-precision floating point numbers representing seconds. Negative absolute times are interpreted as
happening before 1970.

Processing an event with timestamp t may only result in generating events with timestamps greater than or equal to
t.

4.11.3 Discrete and continuous changes

ISO/IEC 14772 does not distinguish between discrete events (such as those generated by a TouchSensor) and events
that are the result of sampling a conceptually continuous set of changes (such as the fraction events generated by a
TimeSensor). An ideal VRML implementation would generate an infinite number of samples for continuous
changes, each of which would be processed infinitely quickly.

Before processing a discrete event, all continuous changes that are occurring at the discrete event's timestamp shall
behave as if they generate events at that same timestamp.

Beyond the requirements that continuous changes be up-to-date during the processing of discrete changes, the
sampling frequency of continuous changes is implementation dependent. Typically a TimeSensor affecting a visible
(or otherwise perceptible) portion of the world will generate events once per frame, where a frame is a single
rendering of the world or one time-step in a simulation.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

52

4.12 Scripting

4.12.1 Introduction

Authors often require that VRML worlds change dynamically in response to user inputs, external events, and the
current state of the world. The proposition "if the vault is currently closed AND the correct combination is entered,
open the vault" illustrates the type of problem which may need addressing. These kinds of decisions are expressed as
Script nodes (see 6.40, Script) that receive events from other nodes, process them, and send events to other nodes. A
Script node can also keep track of information between subsequent executions (i.e., retaining internal state over
time).

This subclause describes the general mechanisms and semantics of all scripting language access protocols. Note that
no scripting language is required by ISO/IEC 14772. Details for two scripting languages are in
annex B, Java platform scripting reference, and annex C, ECMAScript scripting reference, respectively. If either of
these scripting languages are implemented, the Script node implementation shall conform with the definition
described in the corresponding annex.

Event processing is performed by a program or script contained in (or referenced by) the Script node's url field. This
program or script may be written in any programming language that the browser supports.

4.12.2 Script execution

A Script node is activated when it receives an event. The browser shall then execute the program in the Script node's
url field (passing the program to an external interpreter if necessary). The program can perform a wide variety of
actions including sending out events (and thereby changing the scene), performing calculations, and communicating
with servers elsewhere on the Internet. A detailed description of the ordering of event processing is contained in
4.10, Event processing.

Script nodes may also be executed after they are created (see 4.12.3, Initialize() and shutdown()). Some scripting
languages may allow the creation of separate processes from scripts, resulting in continuous execution (see 4.12.6,
Asynchronous scripts).

Script nodes receive events in timestamp order. Any events generated as a result of processing an event are given
timestamps corresponding to the event that generated them. Conceptually, it takes no time for a Script node to
receive and process an event, even though in practice it does take some amount of time to execute a Script.

When a set_url event is received by a Script node that contains a script that has been previously initialized for a
different URL, the shutdown() method of the current script is called (see 4.12.3, Initialize() and shutdown()). Until
the new script becomes available, the script shall behave as though it has no executable content. When the new
script becomes available, the Initialize() method is invoked as defined in 4.10.3, Execution model. The limiting case
is when the URL contains inline code that can be immediately executed upon receipt of the set_url event
(e.g., javascript: protocol). In this case, it can be assumed that the old code is unloaded and the new code loaded
instantaneously, after any dynamic route requests have been performed.

4.12.3 Initialize() and shutdown()

The scripting language binding may define an initialize() method. This method shall be invoked before the browser
presents the world to the user and before any events are processed by any nodes in the same VRML file as the Script
node containing this script. Events generated by the initialize() method shall have timestamps less than any other

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

53

events generated by the Script node. This allows script initialization tasks to be performed prior to the user
interacting with the world.

Likewise, the scripting language binding may define a shutdown() method. This method shall be invoked when the
corresponding Script node is deleted or the world containing the Script node is unloaded or replaced by another
world. This method may be used as a clean-up operation, such as informing external mechanisms to remove
temporary files. No other methods of the script may be invoked after the shutdown() method has completed, though
the shutdown() method may invoke methods or send events while shutting down. Events generated by the
shutdown() method that are routed to nodes that are being deleted by the same action that caused the shutdown()
method to execute will not be delivered. The deletion of the Script node containing the shutdown() method is not
complete until the execution of its shutdown() method is complete.

4.12.4 EventsProcessed()

The scripting language binding may define an eventsProcessed() method that is called after one or more events are
received. This method allows Scripts that do not rely on the order of events received to generate fewer events than
an equivalent Script that generates events whenever events are received. If it is used in some other time-dependent
way, eventsProcessed() may be nondeterministic, since different browser implementations may call
eventsProcessed() at different times.

For a single event cascade, a given Script node's eventsProcessed method shall be called at most once. Events
generated from an eventsProcessed() method are given the timestamp of the last event processed.

4.12.5 Scripts with direct outputs

Scripts that have access to other nodes (via SFNode/MFNode fields or eventIns) and that have their directOutput
field set to TRUE may directly post eventIns to those nodes. They may also read the last value sent from any of the
node's eventOuts.

When setting a value in another node, implementations are free to either immediately set the value or to defer setting
the value until the Script is finished. When getting a value from another node, the value returned shall be up-to-date;
that is, it shall be the value immediately before the time of the current timestamp (the current timestamp returned is
the timestamp of the event that caused the Script node to execute).

If multiple directOutput Scripts read from and/or write to the same node, the results are undefined.

4.12.6 Asynchronous scripts

Some languages supported by VRML browsers may allow Script nodes to spontaneously generate events, allowing
users to create Script nodes that function like new Sensor nodes. In these cases, the Script is generating the initial
events that causes the event cascade, and the scripting language and/or the browser shall determine an appropriate
timestamp for that initial event. Such events are then sorted into the event stream and processed like any other event,
following all of the same rules including those for looping.

4.12.7 Script languages

The Script node's url field may specify a URL which refers to a file (e.g., using protocol http:) or incorporates
scripting language code directly in-line. The MIME-type of the returned data defines the language type.
Additionally, instructions can be included in-line using 4.5.4, Scripting language protocol, defined for the specific
language (from which the language type is inferred).

For example, the following Script node has one eventIn field named start and three different URL values specified
in the url field: Java, ECMAScript, and inline ECMAScript:

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

54

 Script {
 eventIn SFBool start
 url ["http://foo.com/fooBar.class",
 "http://foo.com/fooBar.js",
 "javascript:function start(value, timestamp) { ... }"
]
 }

In the above example when a start eventIn is received by the Script node, one of the scripts found in the url field is
executed. The Java platform bytecode is the first choice, the ECMAScript code is the second choice, and the inline
ECMAScript code the third choice. A description of order of preference for multiple valued URL fields may be
found in 4.5.2, URLs.

4.12.8 EventIn handling

Events received by the Script node are passed to the appropriate scripting language method in the script. The
method's name depends on the language type used. In some cases, it is identical to the name of the eventIn; in
others, it is a general callback method for all eventIns (see the scripting language annexes for details). The method is
passed two arguments: the event value and the event timestamp.

4.12.9 Accessing fields and events

The fields, eventIns, and eventOuts of a Script node are accessible from scripting language methods. Events can be
routed to eventIns of Script nodes and the eventOuts of Script nodes can be routed to eventIns of other nodes.
Another Script node with access to this node can access the eventIns and eventOuts just like any other node (see
4.12.5, Scripts with direct outputs).

It is recommended that user-defined field or event names defined in Script nodes follow the naming conventions
described in 4.7, Field, eventIn, and eventOut semantics.

4.12.9.1 Accessing fields and eventOuts of the script

Fields defined in the Script node are available to the script through a language-specific mechanism (e.g., a variable
is automatically defined for each field and event of the Script node). The field values can be read or written and are
persistent across method calls. EventOuts defined in the Script node may also be read; the returned value is the last
value sent to that eventOut.

4.12.9.2 Accessing eventIns and eventOuts of other nodes

The script can access any eventIn or eventOut of any node to which it has access. The syntax of this mechanism is
language dependent. The following example illustrates how a Script node accesses and modifies an exposed field of
another node (i.e., sends a set_translation eventIn to the Transform node) using ECMAScript:

 DEF SomeNode Transform { }
 Script {
 field SFNode tnode USE SomeNode
 eventIn SFVec3f pos
 directOutput TRUE
 url "javascript:
 function pos(value, timestamp) {
 tnode.set_translation = value;
 }"
 }

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

55

The language-dependent mechanism for accessing eventIns or eventOuts (or the eventIn or eventOut part of an
exposedField) shall support accessing them without their "set_" or "_changed" prefix or suffix, to match the
ROUTE statement semantics. When accessing an eventIn named "zzz" and an eventIn of that name is not found, the
browser shall try to access the eventIn named "set_zzz". Similarly, if accessing an eventOut named "zzz" and an
eventOut of that name is not found, the browser shall try to access the eventOut named "zzz_changed".

4.12.9.3 Sending eventOuts

Each scripting language provides a mechanism for allowing scripts to send a value through an eventOut defined by
the Script node. For example, one scripting language may define an explicit method for sending each eventOut,
while another language may use assignment statements to automatically defined eventOut variables to implicitly
send the eventOut. Sending multiple values through an eventOut during a single script execution will result in the
"last" event being sent, where "last" is determined by the semantics of the scripting language being used.

4.12.10 Browser script interface

4.12.10.1 Introduction

The browser interface provides a mechanism for scripts contained by Script nodes to get and set browser state
(e.g., the URL of the current world). This subclause describes the semantics of methods that the browser interface
supports. An arbitrary syntax is used to define the type of parameters and returned values. The specific annex for a
language contains the actual syntax required. In this abstract syntax, types are given as VRML field types. Mapping
of these types into those of the underlying language (as well as any type conversion needed) is described in the
appropriate language annex.

4.12.10.2 SFString getName() and SFString getVersion()

The getName() and getVersion() methods return a string representing the "name" and "version" of the browser
currently in use. These values are defined by the browser writer, and identify the browser in some (unspecified) way.
They are not guaranteed to be unique or to adhere to any particular format and are for information only. If the
information is unavailable these methods return empty strings.

4.12.10.3 SFFloat getCurrentSpeed()

The getCurrentSpeed() method returns the average navigation speed for the currently bound NavigationInfo node
in meters per second, in the coordinate system of the currently bound Viewpoint node. If speed of motion is not
meaningful in the current navigation type, or if the speed cannot be determined for some other reason, 0.0 is
returned.

4.12.10.4 SFFloat getCurrentFrameRate()

The getCurrentFrameRate() method returns the current frame rate in frames per second. The way in which frame
rate is measured and whether or not it is supported at all is browser dependent. If frame rate measurement is not
supported or cannot be determined, 0.0 is returned.

4.12.10.5 SFString getWorldURL()

The getWorldURL() method returns the URL for the root of the currently loaded world.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

56

4.12.10.6 void replaceWorld(MFNode nodes)

The replaceWorld() method replaces the current world with the world represented by the passed nodes. An
invocation of this method will usually not return since the world containing the running script is being replaced.
Scripts that may call this method shall have mustEvaluate set to TRUE.

4.12.10.7 void loadURL(MFString url, MFString parameter)

The loadURL() method loads the first recognized URL from the specified url field with the passed parameters. The
parameter and url arguments are treated identically to the Anchor node's parameter and url fields (see 6.2, Anchor).
This method returns immediately. However, if the URL is loaded into this browser window (e.g., there is no
TARGET parameter to redirect it to another frame), the current world will be terminated and replaced with the data
from the specified URL at some time in the future. Scripts that may call this method shall set mustEvaluate to
TRUE. If loadUrl() is invoked with a URL of the form "#name", the Viewpoint node with the given name ("name")
in the Script' node's run-time name scope(s) shall be bound. However, if the Script node containing the script that
invokes loadURL("#name") is not part of any run-time name scope or is part of more than one run-time name
scope, results are undefined. See 4.4.6, Run-time name scope, for a description of run-time name scope.

4.12.10.8 void setDescription(SFString description)

The setDescription() method sets the passed string as the current description. This message is displayed in a
browser dependent manner. An empty string clears the current description. Scripts that call this method shall have
mustEvaluate set to TRUE.

4.12.10.9 MFNode createVrmlFromString(SFString vrmlSyntax)

The createVrmlFromString() method parses a string consisting of VRML statements, establishes any PROTO and
EXTERNPROTO declarations and routes, and returns an MFNode value containing the set of nodes in those
statements. The string shall be self-contained (i.e., USE statements inside the string may refer only to nodes DEF'ed
in the string, and non-built-in node types used by the string shall be prototyped using EXTERNPROTO or PROTO
statements inside the string).

4.12.10.10 void createVrmlFromURL(MFString url, SFNode node, SFString event)

The createVrmlFromURL() instructs the browser to load a VRML scene description from the given URL or URLs.
The VRML file referred to shall be self-contained (i.e., USE statements inside the string may refer only to nodes
DEF'ed in the string, and non-built-in node types used by the string shall be prototyped using EXTERNPROTO or
PROTO statements inside the string). After the scene is loaded, event is sent to the passed node returning the root
nodes of the corresponding VRML scene. The event parameter contains a string naming an MFNode eventIn on the
passed node.

4.12.10.11 void addRoute(...) and void deleteRoute(...)

void addRoute(SFNode fromNode, SFString fromEventOut,
 SFNode toNode, SFString toEventIn);

void deleteRoute(SFNode fromNode, SFString fromEventOut,
 SFNode toNode, SFString toEventIn);

These methods respectively add and delete a route between the given event names for the given nodes. Scripts that
call this method shall have directOutput set to TRUE. Routes that are added and deleted shall obey the execution
order defined in 4.10.3, Execution model.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

57

4.13 Navigation

4.13.1 Introduction

Conceptually speaking, every VRML world contains a viewpoint from which the world is currently being viewed.
Navigation is the action taken by the user to change the position and/or orientation of this viewpoint thereby
changing the user's view. This allows the user to move through a world or examine an object. The NavigationInfo
node (see 6.29, NavigationInfo) specifies the characteristics of the desired navigation behaviour, but the exact user
interface is browser-dependent. The Viewpoint node (see 6.53, Viewpoint) specifies key locations and orientations
in the world to which the user may be moved via scripts or browser-specific user interfaces.

4.13.2 Navigation paradigms

The browser may allow the user to modify the location and orientation of the viewer in the virtual world using a
navigation paradigm. Many different navigation paradigms are possible, depending on the nature of the virtual world
and the task the user wishes to perform. For instance, a walking paradigm would be appropriate in an architectural
walkthrough application, while a flying paradigm might be better in an application exploring interstellar space.
Examination is another common use for VRML, where the world is considered to be a single object which the user
wishes to view from many angles and distances.

The NavigationInfo node has a type field that specifies the navigation paradigm for this world. The actual user
interface provided to accomplish this navigation is browser-dependent. See 6.29, NavigationInfo, for details.

4.13.3 Viewing model

The browser controls the location and orientation of the viewer in the world, based on input from the user (using the
browser-provided navigation paradigm) and the motion of the currently bound Viewpoint node (and its coordinate
system). The VRML author can place any number of viewpoints in the world at important places from which the
user might wish to view the world. Each viewpoint is described by a Viewpoint node. Viewpoint nodes exist in their
parent's coordinate system, and both the viewpoint and the coordinate system may be changed to affect the view of
the world presented by the browser. Only one viewpoint is bound at a time. A detailed description of how the
Viewpoint node operates is described in 4.6.10, Bindable children nodes, and 6.53, Viewpoint.

Navigation is performed relative to the Viewpoint's location and does not affect the location and orientation values
of a Viewpoint node. The location of the viewer may be determined with a ProximitySensor node (see
6.38, ProximitySensor).

4.13.4 Collision detection and terrain following

A VRML file can contain Collision nodes (see 6.8, Collision) and NavigationInfo nodes that influence the browser's
navigation paradigm. The browser is responsible for detecting collisions between the viewer and the objects in the
virtual world, and is also responsible for adjusting the viewer's location when a collision occurs. Browsers shall not
disable collision detection except for the special cases listed below. Collision nodes can be used to generate events
when viewer and objects collide, and can be used to designate that certain objects should be treated as transparent to
collisions. Support for inter-object collision is not specified. The NavigationInfo types of WALK, FLY, and NONE
shall strictly support collision detection. However, the NavigationInfo types ANY and EXAMINE may temporarily
disable collision detection during navigation, but shall not disable collision detection during the normal execution of
the world. See 6.29, NavigationInfo, for details on the various navigation types.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

58

NavigationInfo nodes can be used to specify certain parameters often used by browser navigation paradigms. The
size and shape of the viewer's avatar determines how close the avatar may be to an object before a collision is
considered to take place. These parameters can also be used to implement terrain following by keeping the avatar a
certain distance above the ground. They can additionally be used to determine how short an object must be for the
viewer to automatically step up onto it instead of colliding with it.

4.14 Lighting model

4.14.1 Introduction

The VRML lighting model provides detailed equations which define the colours to apply to each geometric object.
For each object, the values of the Material node, Color node and texture currently being applied to the object are
combined with the lights illuminating the object and the currently bound Fog node. These equations are designed to
simulate the physical properties of light striking a surface.

4.14.2 Lighting ’off’

A Shape node is unlit if either of the following is true:

a. The shape's appearance field is NULL (default).

b. The material field in the Appearance node is NULL (default).

×Note the special cases of geometry nodes that do not support lighting (see 6.24, IndexedLineSet, and
6.36, PointSet, for details).

If the shape is unlit, the colour (Irgb) and alpha (A, 1-transparency) of the shape at each point on the shape's geometry
is given in Table 4.5.

Table 4.5 -- Unlit colour and alpha mapping

Texture type Colour per-vertex
 or per-face

Colour NULL

No texture Irgb= ICrgb

A = 1
Irgb= (1, 1, 1)

A = 1

Intensity
(one-component)

Irgb= IT × ICrgb

A = 1
Irgb = (IT,IT,IT)

A = 1

Intensity+Alpha
(two-component)

Irgb= I T × ICrgb

A = AT

Irgb= (IT,IT,IT)
A = AT

RGB
(three-component)

Irgb= ITrgb

A = 1
Irgb= ITrgb

A = 1

RGBA
(four-component)

Irgb= ITrgb

A = AT

Irgb= ITrgb

A = AT

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

59

where:

AT = normalized [0, 1] alpha value from 2 or 4 component texture image
ICrgb = interpolated per-vertex colour, or per-face colour, from Color node
IT = normalized [0, 1] intensity from 1 or 2 component texture image
ITrgb= colour from 3-4 component texture image

4.14.3 Lighting ’on’

If the shape is lit (i.e., a Material and an Appearance node are specified for the Shape), the Color and Texture nodes
determine the diffuse colour for the lighting equation as specified in Table 4.6.

Table 4.6 -- Lit colour and alpha mapping

Texture type Colour per-vertex
 or per-face

Color node NULL

No texture ODrgb = ICrgb

A = 1-TM

ODrgb = IDrgb

A = 1-TM

Intensity texture
(one-component)

ODrgb = IT × ICrgb

A = 1-TM

ODrgb = IT × IDrgb

A = 1-TM

Intensity+Alpha texture
(two-component)

ODrgb = IT × ICrgb

A = AT

ODrgb = IT × IDrgb

A = AT

RGB texture
(three-component)

ODrgb = ITrgb

A = 1-TM

ODrgb = ITrgb

A = 1-TM

RGBA texture
(four-component)

ODrgb = ITrgb

A = AT

ODrgb = ITrgb

A = AT

where:

IDrgb = material diffuseColor
ODrgb = diffuse factor, used in lighting equations below
TM = material transparency

All other terms are as defined in 4.14.2, Lighting `off'.

4.14.4 Lighting equations

An ideal VRML implementation will evaluate the following lighting equation at each point on a lit surface. RGB
intensities at each point on a geometry (Irgb) are given by:

Irgb = IFrgb × (1 -f0) + f0 × (OErgb + SUM(oni × attenuationi × spoti × ILrgb

 × (ambienti + diffusei + specular i)))

where:

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

60

attenuationi = 1 / max(c1 + c2 × dL + c3 × dL
² , 1)

ambienti = Iia × ODrgb × Oa

diffusei = Ii × ODrgb × (N • L)
specular i = Ii × OSrgb × (N • ((L + V) / |L + V|))shininess × 128

and:

• = modified vector dot product: if dot product < 0, then 0.0, otherwise, dot product

c1 , c2, c 3 = light i attenuation
dV = distance from point on geometry to viewer’s position, in coordinate system of current fog node
dL = distance from light to point on geometry, in light’s coordinate system
f0 = Fog interpolant, see Table 4.8 for calculation
IFrgb = currently bound fog’s color
I Lrgb = light i color

Ii = light i intensity
Iia = light i ambientIntensity
L = (Point/SpotLight) normalized vector from point on geometry to light source i position

L = (DirectionalLight) -direction of light source i
N = normalized normal vector at this point on geometry (interpolated from vertex normals specified in Normal
node or calculated by browser)
Oa = Material ambientIntensity
ODrgb = diffuse colour, from Material node, Color node, and/or texture node
OErgb = Material emissiveColor
OSrgb = Material specularColor
on i = 1, if light source i affects this point on the geometry,

0, if light source i does not affect this geometry (if farther away than radius for PointLight or SpotLight, outside
of enclosing Group/Transform for DirectionalLights, or on field is FALSE)

shininess = Material shininess

spotAngle = acos(-L • spotDiri)
spot BW = SpotLight i beamWidth
spot CO = SpotLight i cutOffAngle
spot i = spotlight factor, see Table 4.7 for calculation
spotDiri = normalized SpotLight i direction
SUM: sum over all light sources i
V = normalized vector from point on geometry to viewer’s position

Table 4.7 -- Calculation of the spotlight factor

Condition (in order) spoti =

lighti is PointLight or DirectionalLight 1

spotAngle >= spotCO 0

spotAngle <= spotBW 1

spotBW < spotAngle < spot CO (spotAngle - spotCO) / (spotBW-spotCO)

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

61

Table 4.8 -- Calculation of the fog interpolant

Condition f0 =

no fog 1

fogType "LINEAR", dV < fogVisibility (fogVisibility-dV) / fogVisibility

fogType "LINEAR", dV > fogVisibility 0

fogType "EXPONENTIAL", dV < fogVisibility exp(-dV / (fogVisibility-dV))

fogType "EXPONENTIAL", dV > fogVisibility 0

4.14.5 References

The VRML lighting equations are based on the simple illumination equations given in E.[FOLE] and E.[OPEN].

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

62

5 Field and event reference

5.1 Introduction

5.1.1 Table of contents

5.1 Introduction
 5.1.1 Table of contents
 5.1.2 Description
5.2 SFBool
5.3 SFColor and MFColor
5.4 SFFloat and MFFloat
5.5 SFImage
5.6 SFInt32 and MFInt32
5.7 SFNode and MFNode
5.8 SFRotation and MFRotation
5.9 SFString and MFString
5.10 SFTime and MFTime
5.11 SFVec2f and MFVec2f
5.12 SFVec3f and MFVec3f

5.1.2 Description

This clause describes the syntax and general semantics of fields and events, the elemental data types used by VRML
nodes to define objects (see 6, Node reference). Nodes are composed of fields and events (see 4, Concepts). The
types defined in this annex are used by both fields and events.

There are two general classes of fields and events: fields and events that contain a single value (where a value may
be a single number, a vector, or even an image), and fields and events that contain an ordered list of multiple values.
Single-valued fields and events have names that begin with SF.Multiple-valued fields and events have names that
begin with MF.

Multiple-valued fields/events are written as an ordered list of values enclosed in square brackets and separated by
whitespace. If the field or event has zero values, only the square brackets ("[]") are written. The last value may
optionally be followed by whitespace. If the field has exactly one value, the brackets may be omitted. For example,
all of the following are valid for a multiple-valued MFInt32 field named foo containing the single integer value 1:

 foo 1
 foo [1,]
 foo [1]

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

63

5.2 SFBool
The SFBool field or event specifies a single boolean value. SFBools are written as TRUE or FALSE. For example,

fooBool FALSE

is an SFBool field, fooBool, defining a FALSE value.

The initial value of an SFBool eventOut is FALSE.

5.3 SFColor and MFColor
The SFColor field or event specifies one RGB (red-green-blue) colour triple. MFColor specifies zero or more RGB
triples. Each colour is written to the VRML file as an RGB triple of floating point numbers in ISO C floating point
format (see 2.[ISOC]) in the range 0.0 to 1.0. For example:

fooColor [1.0 0. 0.0, 0 1 0, 0 0 1]

is an MFColor field, fooColor, containing the three primary colours red, green, and blue.

The initial value of an SFColor eventOut is (0 0 0). The initial value of an MFColor eventOut is [].

5.4 SFFloat and MFFloat
The SFFloat field or event specifies one single-precision floating point number. MFFloat specifies zero or more
single-precision floating point numbers. SFFloats and MFFloats are written to the VRML file in ISO C floating
point format (see 2.[ISOC]). For example:

fooFloat [3.1415926, 12.5e-3, .0001]

is an MFFloat field, fooFloat, containing three floating point values.

The initial value of an SFFloat eventOut is 0.0. The initial value of an MFFloat eventOut is [].

5.5 SFImage
The SFImage field or event specifies a single uncompressed 2-dimensional pixel image. SFImage fields and events
are written to the VRML file as three integers representing the width, height and number of components in the
image, followed by width*height hexadecimal or integer values representing the pixels in the image, separated by
whitespace:

fooImage <width> <height> <num components> <pixels values>

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

64

Pixel values are limited to 256 levels of intensity (i.e., 0-255 decimal or 0x00-0xFF hexadecimal). A one-component
image specifies one-byte hexadecimal or integer values representing the intensity of the image. For example, 0xFF
is full intensity in hexadecimal (255 in decimal), 0x00 is no intensity (0 in decimal). A two-component image
specifies the intensity in the first (high) byte and the alpha opacity in the second (low) byte. Pixels in a three-
component image specify the red component in the first (high) byte, followed by the green and blue components
(e.g., 0xFF0000 is red, 0x00FF00 is green, 0x0000FF is blue). Four-component images specify the alpha
opacity byte after red/green/blue (e.g., 0x0000FF80 is semi-transparent blue). A value of 0x00 is completely
transparent, 0xFF is completely opaque. Note that alpha equals (1.0 - transparency), if alpha and transparency range
from 0.0 to 1.0.

Each pixel is read as a single unsigned number. For example, a 3-component pixel with value 0x0000FF may also
be written as 0xFF (hexadecimal) or 255 (decimal). Pixels are specified from left to right, bottom to top. The first
hexadecimal value is the lower left pixel and the last value is the upper right pixel.

For example,

fooImage 1 2 1 0xFF 0x00

is a 1 pixel wide by 2 pixel high one-component (i.e., greyscale) image, with the bottom pixel white and the top
pixel black. As another example,

fooImage 2 4 3 0xFF0000 0xFF00 0 0 0 0 0xFFFFFF 0xFFFF00

 # red green black.. white yellow

is a 2 pixel wide by 4 pixel high RGB image, with the bottom left pixel red, the bottom right pixel green, the two
middle rows of pixels black, the top left pixel white, and the top right pixel yellow.

The initial value of an SFImage eventOut is (0 0 0).

5.6 SFInt32 and MFInt32
The SFInt32 field and event specifies one 32-bit integer. The MFInt32 field and event specifies zero or more 32-bit
integers. SFInt32 and MFInt32 fields and events are written to the VRML file as an integer in decimal or
hexadecimal (beginning with '0x') format. For example:

fooInt32 [17, -0xE20, -518820]

is an MFInt32 field containing three values.

The initial value of an SFInt32 eventOut is 0. The initial value of an MFInt32 eventOut is [].

5.7 SFNode and MFNode
The SFNode field and event specifies a VRML node. The MFNode field and event specifies zero or more nodes.
The following example illustrates valid syntax for an MFNode field, fooNode, defining four nodes:

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

65

 fooNode [Transform { translation 1 0 0 }
 DEF CUBE Box { }
 USE CUBE
 USE SOME_OTHER_NODE]

The SFNode field and event may contain the keyword NULL to indicate that it is empty.

The initial value of an SFNode eventOut is NULL. The initial value of an MFNode eventOut is [].

5.8 SFRotation and MFRotation
The SFRotation field and event specifies one arbitrary rotation. The MFRotation field and event specifies zero or
more arbitrary rotations. An SFRotation is written to the VRML file as four ISO C floating point values (see
2.[ISOC]) separated by whitespace. The first three values specify a normalized rotation axis vector about which the
rotation takes place. The fourth value specifies the amount of right-handed rotation about that axis in radians. For
example, an SFRotation containing a PI radians rotation about the Y axis is:

fooRot 0.0 1.0 0.0 3.14159265

The 3x3 matrix representation of a rotation (x y z a) is

 [tx2+c txy+sz txz-sy
 txy-sz ty2+c tyz+sx
 txz+sy tyz-sx tz2+c]

 where c = cos(a), s = sin(a), and t = 1-c

The initial value of an SFRotation eventOut is (0 0 1 0). The initial value of an MFRotation eventOut is [].

5.9 SFString and MFString
The SFString and MFString fields and events contain strings formatted with the UTF-8 universal character set (see
2.[UTF8]). SFString specifies a single string. The MFString specifies zero or more strings. Strings are written to the
VRML file as a sequence of UTF-8 octets enclosed in double quotes (e.g., "string").

Any characters (including linefeeds and '#') may appear within the quotes. A double quote character within the string
is preceded with a backslash. A backslash character within the string is also preceded with a backslash forming two
backslashes. For example:

fooString ["One, Two, Three", "He said, \"Immel did it!\""]

is an MFString field, fooString, with two valid strings.

The initial value of an SFString eventOut is "" (the empty string). The initial value of an MFString eventOut is [].

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

66

5.10 SFTime and MFTime
The SFTime field or event specifies a single time value. The MFTime field or event specifies zero or more time
values. Time values are written to the VRML file as a double-precision floating point number in ISO C floating
point format (see 2.[ISOC]). Time values are specified as the number of seconds from a specific time origin.
Typically, SFTime fields and events represent the number of seconds since Jan 1, 1970, 00:00:00 GMT. For
example:

fooTime 0.0

is an SFTime field, fooTime, representing a time of 0.0 seconds.

The initial value of an SFTime eventOut is -1. The initial value of an MFTime eventOut is [].

5.11 SFVec2f and MFVec2f
The SFVec2f field or event specifies a two-dimensional (2D) vector. An MFVec2f field or event specifies zero or
more 2D vectors. SFVec2f's and MFVec2f's are written to the VRML file as a pair of ISO C floating point values
(see 2.[ISOC]) separated by whitespace. For example:

fooVec2f [42 666, 7 94]

is an MFVec2f field, fooVec2f, with two valid vectors.

The initial value of an SFVec2f eventOut is (0 0). The initial value of an MFVec2f eventOut is [].

5.12 SFVec3f and MFVec3f
The SFVec3f field or event specifies a three-dimensional (3D) vector. An MFVec3f field or event specifies zero or
more 3D vectors. SFVec3f's and MFVec3f's are written to the VRML file as three ISO C floating point values (see
2.[ISOC]) separated by whitespace. For example:

fooVec3f [1 42 666, 7 94 0]

is an MFVec3f field, fooVec3f, with two valid vectors.

The initial value of an SFVec3f eventOut is (0 0 0). The initial value of an MFVec3f eventOut is [].

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

67

6 Node reference

6.1 Introduction
This clause provides a detailed definition of the syntax and semantics of each node in this part of ISO/IEC 14772.
Table 6.1 lists the topics in this clause.

Table 6.1 -- Table of contents

6.1 Introduction
6.2 Anchor
6.3 Appearance
6.4 AudioClip
6.5 Background
6.6 Billboard
6.7 Box
6.8 Collision
6.9 Color
6.10 ColorInterpolator
6.11 Cone
6.12 Coordinate
6.13 CoordinateInterpolator
6.14 Cylinder
6.15 CylinderSensor
6.16 DirectionalLight
6.17 ElevationGrid
6.18 Extrusion
6.19 Fog

6.20 FontStyle
6.21 Group
6.22 ImageTexture
6.23 IndexedFaceSet
6.24 IndexedLineSet
6.25 Inline
6.26 LOD
6.27 Material
6.28 MovieTexture
6.29 NavigationInfo
6.30 Normal
6.31 NormalInterpolator
6.32 OrientationInterpolator
6.33 PixelTexture
6.34 PlaneSensor
6.35 PointLight
6.36 PointSet
6.37 PositionInterpolator
6.38 ProximitySensor

6.39 ScalarInterpolator
6.40 Script
6.41 Shape
6.42 Sound
6.43 Sphere
6.44 SphereSensor
6.45 SpotLight
6.46 Switch
6.47 Text
6.48 TextureCoordinate
6.49 TextureTransform
6.50 TimeSensor
6.51 TouchSensor
6.52 Transform
6.53 Viewpoint
6.54 VisibilitySensor
6.55 WorldInfo

In this clause, the first item in each subclause presents the public declaration for the node. This syntax is not the
actual UTF-8 encoding syntax. The parts of the interface that are identical to the UTF-8 encoding syntax are in bold.
The node declaration defines the names and types of the fields and events for the node, as well as the default values
for the fields.

The node declarations also include value ranges for the node's fields and exposedFields (where appropriate).
Parentheses imply that the range bound is exclusive, while brackets imply that the range value is inclusive. For
example, a range of (-∞, 1] defines the lower bound as -∞ exclusively and the upper bound as 1 inclusively.

For example, the following defines the Collision node declaration:

Collision {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFBool collide TRUE

 field SFVec3f bboxCenter 0 0 0 # (-∞, ∞)
 field SFVec3f bboxSize -1 -1 -1 # (0, ∞) or -1,-1,-1
 field SFNode proxy NULL
 eventOut SFTime collideTime
 }

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

68

The fields and events contained within the node declarations are ordered as follows:

e. eventIns, in alphabetical order;

f. exposedFields, in alphabetical order;

g. fields, in alphabetical order;

h. eventOuts, in alphabetical order.

6.2 Anchor

Anchor {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFString description ""
 exposedField MFString parameter []
 exposedField MFString url []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Anchor grouping node retrieves the content of a URL when the user activates (e.g., clicks) some geometry
contained within the Anchor node's children. If the URL points to a valid VRML file, that world replaces the world
of which the Anchor node is a part (except when the parameter field, described below, alters this behaviour). If non-
VRML data is retrieved, the browser shall determine how to handle that data; typically, it will be passed to an
appropriate non-VRML browser.

Exactly how a user activates geometry contained by the Anchor node depends on the pointing device and is
determined by the VRML browser. Typically, clicking with the pointing device will result in the new scene
replacing the current scene. An Anchor node with an empty url does nothing when its children are chosen. A
description of how multiple Anchors and pointing-device sensors are resolved on activation is contained in
4.6.7, Sensor nodes.

More details on the children, addChildren, and removeChildren fields and eventIns can be found in 4.6.5, Grouping
and children nodes.

The description field in the Anchor node specifies a textual description of the Anchor node. This may be used by
browser-specific user interfaces that wish to present users with more detailed information about the Anchor.

The parameter exposed field may be used to supply any additional information to be interpreted by the browser.
Each string shall consist of "keyword=value" pairs. For example, some browsers allow the specification of a 'target'
for a link to display a link in another part of an HTML document. The parameter field is then:

Anchor {
 parameter ["target=name_of_frame"]
 ...
}

An Anchor node may be used to bind the initial Viewpoint node in a world by specifying a URL ending with
"#ViewpointName" where "ViewpointName" is the name of a viewpoint defined in the VRML file. For example:

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

69

Anchor {
 url "http://www.school.edu/vrml/someScene.wrl#OverView"
 children Shape { geometry Box {} }
}

specifies an anchor that loads the VRML file "someScene.wrl" and binds the initial user view to the Viewpoint node
named "OverView" when the Anchor node's geometry (Box) is activated. If the named Viewpoint node is not found
in the VRML file, the VRML file is loaded using the default Viewpoint node binding stack rules (see 6.53,
Viewpoint).

If the url field is specified in the form "#ViewpointName" (i.e. no file name), the Viewpoint node with the given
name ("ViewpointName") in the Anchor's run-time name scope(s) shall be bound (set_bind TRUE). The results are
undefined if there are multiple Viewpoints with the same name in the Anchor's run-time name scope(s). The results
are undefined if the Anchor node is not part of any run-time name scope or is part of more than one run-time name
scope. See 4.4.6, Run-time name scope, for a description of run-time name scopes. See 6.53, Viewpoint, for the
Viewpoint transition rules that specify how browsers shall interpret the transition from the old Viewpoint node to the
new one. For example:

Anchor {
 url "#Doorway"
 children Shape { geometry Sphere {} }
}

binds the viewer to the viewpoint defined by the "Doorway" viewpoint in the current world when the sphere is
activated. In this case, if the Viewpoint is not found, no action occurs on activation.

More details on the url field are contained in 4.5, VRML and the World Wide Web.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Anchor's children. This is a hint that
may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than the
actual bounding box of the children at any time. The default bboxSize value, (-1, -1, -1), implies that the bounding
box is not specified and if needed shall be calculated by the browser. More details on the bboxCenter and bboxSize
fields can be found in 4.6.4, Bounding boxes.

6.3 Appearance

Appearance {
 exposedField SFNode material NULL
 exposedField SFNode texture NULL
 exposedField SFNode textureTransform NULL
}

The Appearance node specifies the visual properties of geometry. The value for each of the fields in this node may
be NULL. However, if the field is non-NULL, it shall contain one node of the appropriate type.

The material field, if specified, shall contain a Material node. If the material field is NULL or unspecified, lighting
is off (all lights are ignored during rendering of the object that references this Appearance) and the unlit object
colour is (1, 1, 1). Details of the VRML lighting model are in 4.14, Lighting model.

The texture field, if specified, shall contain one of the various types of texture nodes (ImageTexture, MovieTexture,
or PixelTexture). If the texture node is NULL or the texture field is unspecified, the object that references this
Appearance is not textured.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

70

The textureTransform field, if specified, shall contain a TextureTransform node. If the textureTransform is NULL or
unspecified, the textureTransform field has no effect.

6.4 AudioClip

AudioClip {
 exposedField SFString description ""
 exposedField SFBool loop FALSE
 exposedField SFFloat pitch 1.0 # (0,∞)
 exposedField SFTime startTime 0 # (-∞,∞)
 exposedField SFTime stopTime 0 # (-∞,∞)
 exposedField MFString url []
 eventOut SFTime duration_changed
 eventOut SFBool isActive
}

An AudioClip node specifies audio data that can be referenced by Sound nodes.

The description field specifies a textual description of the audio source. A browser is not required to display the
description field but may choose to do so in addition to playing the sound.

The url field specifies the URL from which the sound is loaded. Browsers shall support at least the wavefile format
in uncompressed PCM format (see E.[WAV]). It is recommended that browsers also support the MIDI file type 1
sound format (see 2.[MIDI]); MIDI files are presumed to use the General MIDI patch set. Subclause
4.5, VRML and the World Wide Web, contains details on the url field. The results are undefined when no URLs
refer to supported data types

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the AudioClip
node, are discussed in detail in 4.6.9, Time-dependent nodes. The "cycle" of an AudioClip is the length of time in
seconds for one playing of the audio at the specified pitch.

The pitch field specifies a multiplier for the rate at which sampled sound is played. Values for the pitch field shall be
greater than zero. Changing the pitch field affects both the pitch and playback speed of a sound. A set_pitch event to
an active AudioClip is ignored and no pitch_changed eventOut is generated. If pitch is set to 2.0, the sound shall be
played one octave higher than normal and played twice as fast. For a sampled sound, the pitch field alters the
sampling rate at which the sound is played. The proper implementation of pitch control for MIDI (or other note
sequence sound clips) is to multiply the tempo of the playback by the pitch value and adjust the MIDI Coarse Tune
and Fine Tune controls to achieve the proper pitch change.

A duration_changed event is sent whenever there is a new value for the "normal" duration of the clip. Typically, this
will only occur when the current url in use changes and the sound data has been loaded, indicating that the clip is
playing a different sound source. The duration is the length of time in seconds for one cycle of the audio for a pitch
set to 1.0. Changing the pitch field will not trigger a duration_changed event. A duration value of "-1" implies that
the sound data has not yet loaded or the value is unavailable for some reason. A duration_changed event shall be
generated if the AudioClip node is loaded when the VRML file is read or the AudioClip node is added to the scene
graph.

The isActive eventOut may be used by other nodes to determine if the clip is currently active. If an AudioClip is
active, it shall be playing the sound corresponding to the sound time (i.e., in the sound's local time system with
sample 0 at time 0):

 t = (now - startTime) modulo (duration / pitch)

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

71

6.5 Background

Background {
 eventIn SFBool set_bind
 exposedField MFFloat groundAngle [] # [0,π/2]
 exposedField MFColor groundColor [] # [0,1]
 exposedField MFString backUrl []
 exposedField MFString bottomUrl []
 exposedField MFString frontUrl []
 exposedField MFString leftUrl []
 exposedField MFString rightUrl []
 exposedField MFString topUrl []
 exposedField MFFloat skyAngle [] # [0,π]
 exposedField MFColor skyColor 0 0 0 # [0,1]
 eventOut SFBool isBound
}

The Background node is used to specify a colour backdrop that simulates ground and sky, as well as a background
texture, or panorama, that is placed behind all geometry in the scene and in front of the ground and sky. Background
nodes are specified in the local coordinate system and are affected by the accumulated rotation of their ancestors as
described below.

Background nodes are bindable nodes as described in 4.6.10, Bindable children nodes. There exists a Background
stack, in which the top-most Background on the stack is the currently active Background. To move a Background to
the top of the stack, a TRUE value is sent to the set_bind eventIn. Once active, the Background is then bound to the
browsers view. A FALSE value sent to set_bind removes the Background from the stack and unbinds it from the
browser's view. More detail on the bind stack is described in 4.6.10, Bindable children nodes.

The backdrop is conceptually a partial sphere (the ground) enclosed inside of a full sphere (the sky) in the local
coordinate system with the viewer placed at the centre of the spheres. Both spheres have infinite radius and each is
painted with concentric circles of interpolated colour perpendicular to the local Y-axis of the sphere. The
Background node is subject to the accumulated rotations of its ancestors' transformations. Scaling and translation
transformations are ignored. The sky sphere is always slightly farther away from the viewer than the ground partial
sphere causing the ground to appear in front of the sky where they overlap.

The skyColor field specifies the colour of the sky at various angles on the sky sphere. The first value of the skyColor
field specifies the colour of the sky at 0.0 radians representing the zenith (i.e., straight up from the viewer). The
skyAngle field specifies the angles from the zenith in which concentric circles of colour appear. The zenith of the
sphere is implicitly defined to be 0.0 radians, the natural horizon is at π/2 radians, and the nadir (i.e., straight down
from the viewer) is at π radians. skyAngle is restricted to non-decreasing values in the range [0.0,π]. There shall be
one more skyColor value than there are skyAngle values. The first colour value is the colour at the zenith, which is
not specified in the skyAngle field. If the last skyAngle is less than pi, then the colour band between the last skyAngle
and the nadir is clamped to the last skyColor. The sky colour is linearly interpolated between the specified skyColor
values.

The groundColor field specifies the colour of the ground at the various angles on the ground partial sphere. The first
value of the groundColor field specifies the colour of the ground at 0.0 radians representing the nadir (i.e., straight
down from the user). The groundAngle field specifies the angles from the nadir that the concentric circles of colour
appear. The nadir of the sphere is implicitly defined at 0.0 radians. groundAngle is restricted to non-decreasing
values in the range [0.0, π/2]. There shall be one more groundColor value than there are groundAngle values. The
first colour value is for the nadir which is not specified in the groundAngle field. If the last groundAngle is less than
π/2, the region between the last groundAngle and the equator is non-existant. The ground colour is linearly
interpolated between the specified groundColor values.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

72

The backUrl, bottomUrl, frontUrl, leftUrl, rightUrl, and topUrl fields specify a set of images that define a
background panorama between the ground/sky backdrop and the scene's geometry. The panorama consists of six
images, each of which is mapped onto a face of an infinitely large cube contained within the backdrop spheres and
centred in the local coordinate system. The images are applied individually to each face of the cube. On the front,
back, right, and left faces of the cube, when viewed from the origin looking down the negative Z-axis with the Y-
axis as the view up direction, each image is mapped onto the corresponding face with the same orientation as if the
image were displayed normally in 2D (backUrl to back face, frontUrl to front face, leftUrl to left face, and rightUrl
to right face). On the top face of the cube, when viewed from the origin looking along the +Y-axis with the +Z-axis
as the view up direction, the topUrl image is mapped onto the face with the same orientation as if the image were
displayed normally in 2D. On the bottom face of the box, when viewed from the origin along the negative Y-axis
with the negative Z-axis as the view up direction, the bottomUrl image is mapped onto the face with the same
orientation as if the image were displayed normally in 2D.

Figure 6.1 illustrates the Background node backdrop and background textures.

Alpha values in the panorama images (i.e., two or four component images) specify that the panorama is semi-
transparent or transparent in regions, allowing the groundColor and skyColor to be visible.

See 4.6.11, Texture maps, for a general description of texture maps.

Often, the bottomUrl and topUrl images will not be specified, to allow sky and ground to show. The other four
images may depict surrounding mountains or other distant scenery. Browsers shall support the JPEG (see 2.[JPEG])
and PNG (see 2.[PNG]) image file formats, and in addition, may support any other image format (e.g., CGM) that
can be rendered into a 2D image. Support for the GIF (see E.[GIF]) format is recommended (including transparency)
. More detail on the url fields can be found in 4.5, VRML and the World Wide Web.

Figure 6.1 -- Background node

Panorama images may be one component (greyscale), two component (greyscale plus alpha), three component (full
RGB colour), or four-component (full RGB colour plus alpha).

Ground colours, sky colours, and panoramic images do not translate with respect to the viewer, though they do
rotate with respect to the viewer. That is, the viewer can never get any closer to the background, but can turn to
examine all sides of the panorama cube, and can look up and down to see the concentric rings of ground and sky (if
visible).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

73

Background nodes are not affected by Fog nodes. Therefore, if a Background node is active (i.e., bound) while a
Fog node is active, then the Background node will be displayed with no fogging effects. It is the author's
responsibility to set the Background values to match the Fog values (e.g., ground colours fade to fog colour with
distance and panorama images tinted with fog colour). Background nodes are not affected by light sources.

6.6 Billboard

Billboard {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField SFVec3f axisOfRotation 0 1 0 # (-∞,∞)
 exposedField MFNode children []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Billboard node is a grouping node which modifies its coordinate system so that the Billboard node's local Z-axis
turns to point at the viewer. The Billboard node has children which may be other children nodes.

The axisOfRotation field specifies which axis to use to perform the rotation. This axis is defined in the local
coordinate system.

When the axisOfRotation field is not (0, 0, 0), the following steps describe how to rotate the billboard to face the
viewer:

a. Compute the vector from the Billboard node's origin to the viewer's position. This vector is called the
billboard-to-viewer vector.

b. Compute the plane defined by the axisOfRotation and the billboard-to-viewer vector.

c. Rotate the local Z-axis of the billboard into the plane from b., pivoting around the axisOfRotation.

When the axisOfRotation field is set to (0, 0, 0), the special case of viewer-alignment is indicated. In this case, the
object rotates to keep the billboard's local Y-axis parallel with the Y-axis of the viewer. This special case is
distinguished by setting the axisOfRotation to (0, 0, 0). The following steps describe how to align the billboard's Y-
axis to the Y-axis of the viewer:

d. Compute the billboard-to-viewer vector.

e. Rotate the Z-axis of the billboard to be collinear with the billboard-to-viewer vector and pointing towards
the viewer's position.

f. Rotate the Y-axis of the billboard to be parallel and oriented in the same direction as the Y-axis of the
viewer.

If the axisOfRotation and the billboard-to-viewer line are coincident, the plane cannot be established and the
resulting rotation of the billboard is undefined. For example, if the axisOfRotation is set to (0,1,0) (Y-axis) and the
viewer flies over the billboard and peers directly down the Y-axis, the results are undefined.

Multiple instances of Billboard nodes (DEF/USE) operate as expected: each instance rotates in its unique coordinate
system to face the viewer.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

74

Subclause 4.6.5, Grouping and children nodes, provides a description of the children, addChildren, and
removeChildren fields and eventIns.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Billboard node's children. This is a
hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller
than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. A description of the bboxCenter and
bboxSize fields is contained in 4.6.4, Bounding boxes.

6.7 Box

Box {
 field SFVec3f size 2 2 2 # (0,∞)
}

The Box node specifies a rectangular parallelepiped box centred at (0, 0, 0) in the local coordinate system and
aligned with the local coordinate axes. By default, the box measures 2 units in each dimension, from -1 to +1. The
size field specifies the extents of the box along the X-, Y-, and Z-axes respectively and each component value shall
be greater than zero. Figure 6.2 illustrates the Box node.

Figure 6.2 -- Box node

Textures are applied individually to each face of the box. On the front (+Z), back (-Z), right (+X), and left (-X) faces
of the box, when viewed from the outside with the +Y-axis up, the texture is mapped onto each face with the same
orientation as if the image were displayed normally in 2D. On the top face of the box (+Y), when viewed from
above and looking down the Y-axis toward the origin with the -Z-axis as the view up direction, the texture is
mapped onto the face with the same orientation as if the image were displayed normally in 2D. On the bottom face
of the box (-Y), when viewed from below looking up the Y-axis toward the origin with the +Z-axis as the view up
direction, the texture is mapped onto the face with the same orientation as if the image were displayed normally in
2D. TextureTransform affects the texture coordinates of the Box.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

75

The Box node's geometry requires outside faces only. When viewed from the inside the results are undefined.

6.8 Collision

Collision {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFBool collide TRUE
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
 field SFNode proxy NULL
 eventOut SFTime collideTime
}

The Collision node is a grouping node that specifies the collision detection properties for its children (and their
descendants), specifies surrogate objects that replace its children during collision detection, and sends events
signalling that a collision has occurred between the avatar and the Collision node's geometry or surrogate. By
default, all geometric nodes in the scene are collidable with the viewer except IndexedLineSet, PointSet, and Text.
Browsers shall detect geometric collisions between the avatar (see 6.29, NavigationInfo) and the scene's geometry
and prevent the avatar from 'entering' the geometry. See 4.13.4, Collision detection and terrain following, for general
information on collision detection.

If there are no Collision nodes specified in a VRML file, browsers shall detect collisions between the avatar and all
objects during navigation.

Subclause 4.6.5, Grouping and children nodes, contains a description of the children, addChildren, and
removeChildren fields and eventIns.

The Collision node's collide field enables and disables collision detection. If collide is set to FALSE, the children
and all descendants of the Collision node shall not be checked for collision, even though they are drawn. This
includes any descendent Collision nodes that have collide set to TRUE (i.e., setting collide to FALSE turns collision
off for every node below it).

Collision nodes with the collide field set to TRUE detect the nearest collision with their descendent geometry (or
proxies). When the nearest collision is detected, the collided Collision node sends the time of the collision through
its collideTime eventOut. If a Collision node contains a child, descendant, or proxy (see below) that is a Collision
node, and both Collision nodes detect that a collision has occurred, both send a collideTime event at the same time.
A collideTime event shall be generated if the avatar is colliding with collidable geometry when the Collision node is
read from a VRML file or inserted into the transformation hierarchy.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Collision node's children. This is a
hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller
than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. More details on the bboxCenter and
bboxSize fields can be found in 4.6.4, Bounding boxes.

The collision proxy, defined in the proxy field, is any legal children node as described in 4.6.5, Grouping and
children nodes, that is used as a substitute for the Collision node's children during collision detection. The proxy is
used strictly for collision detection; it is not drawn.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

76

If the value of the collide field is TRUE and the proxy field is non-NULL, the proxy field defines the scene on which
collision detection is performed. If the proxy value is NULL, collision detection is performed against the children of
the Collision node.

If proxy is specified, any descendent children of the Collision node are ignored during collision detection. If children
is empty, collide is TRUE, and proxy is specified, collision detection is performed against the proxy but nothing is
displayed. In this manner, invisible collision objects may be supported.

The collideTime eventOut generates an event specifying the time when the avatar (see 6.29, NavigationInfo) makes
contact with the collidable children or proxy of the Collision node. An ideal implementation computes the exact
time of collision. Implementations may approximate the ideal by sampling the positions of collidable objects and the
user. The NavigationInfo node contains additional information for parameters that control the avatar size.

6.9 Color

Color {
 exposedField MFColor color [] # [0,1]
}

This node defines a set of RGB colours to be used in the fields of another node.

Color nodes are only used to specify multiple colours for a single geometric shape, such as colours for the faces or
vertices of an IndexedFaceSet. A Material node is used to specify the overall material parameters of lit geometry. If
both a Material node and a Color node are specified for a geometric shape, the colours shall replace the diffuse
component of the material.

RGB or RGBA textures take precedence over colours; specifying both an RGB or RGBA texture and a Color node
for geometric shape will result in the Color node being ignored. Details on lighting equations can be found in 4.14,
Lighting model.

6.10 ColorInterpolator

ColorInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFColor keyValue [] # [0,1]
 eventOut SFColor value_changed
}

This node interpolates among a list of MFColor key values to produce an SFColor (RGB) value_changed event. The
number of colours in the keyValue field shall be equal to the number of keyframes in the key field. The keyValue
field and value_changed events are defined in RGB colour space. A linear interpolation using the value of
set_fraction as input is performed in HSV space (see E.[FOLE] for description of RGB and HSV colour spaces).
The results are undefined when interpolating between two consecutive keys with complementary hues.

4.6.8, Interpolator nodes, contains a detailed discussion of interpolators.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

77

6.11 Cone

Cone {
 field SFFloat bottomRadius 1 # (0,∞)
 field SFFloat height 2 # (0,∞)
 field SFBool side TRUE
 field SFBool bottom TRUE
}

The Cone node specifies a cone which is centred in the local coordinate system and whose central axis is aligned
with the local Y-axis. The bottomRadius field specifies the radius of the cone's base, and the height field specifies
the height of the cone from the centre of the base to the apex. By default, the cone has a radius of 1.0 at the bottom
and a height of 2.0, with its apex at y = height/2 and its bottom at y = -height/2. Both bottomRadius and height shall
be greater than zero. Figure 6.3 illustrates the Cone node.

Figure 6.3 -- Cone node

The side field specifies whether sides of the cone are created and the bottom field specifies whether the bottom cap
of the cone is created. A value of TRUE specifies that this part of the cone exists, while a value of FALSE specifies
that this part does not exist (not rendered or eligible for collision or sensor intersection tests).

When a texture is applied to the sides of the cone, the texture wraps counterclockwise (from above) starting at the
back of the cone. The texture has a vertical seam at the back in the X=0 plane, from the apex (0, height/2, 0) to the
point (0, -height/2, -bottomRadius). For the bottom cap, a circle is cut out of the texture square centred at
(0,-height/2, 0) with dimensions (2 × bottomRadius) by (2 × bottomRadius). The bottom cap texture appears right

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

78

side up when the top of the cone is rotated towards the -Z-axis. TextureTransform affects the texture coordinates of
the Cone.

The Cone geometry requires outside faces only. When viewed from the inside the results are undefined.

6.12 Coordinate

Coordinate {
 exposedField MFVec3f point [] # (-∞,∞)
}

This node defines a set of 3D coordinates to be used in the coord field of vertex-based geometry nodes including
IndexedFaceSet, IndexedLineSet, and PointSet.

6.13 CoordinateInterpolator

CoordinateInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFVec3f keyValue [] # (-∞,∞)
 eventOut MFVec3f value_changed
}

This node linearly interpolates among a list of MFVec3f values. The number of coordinates in the keyValue field
shall be an integer multiple of the number of keyframes in the key field. That integer multiple defines how many
coordinates will be contained in the value_changed events.

4.6.8, Interpolator nodes, contains a more detailed discussion of interpolators.

6.14 Cylinder

Cylinder {
 field SFBool bottom TRUE
 field SFFloat height 2 # (0,∞)
 field SFFloat radius 1 # (0,∞)
 field SFBool side TRUE
 field SFBool top TRUE
}

The Cylinder node specifies a capped cylinder centred at (0,0,0) in the local coordinate system and with a central
axis oriented along the local Y-axis. By default, the cylinder is sized at "-1" to "+1" in all three dimensions. The
radius field specifies the radius of the cylinder and the height field specifies the height of the cylinder along the
central axis. Both radius and height shall be greater than zero. Figure 6.4 illustrates the Cylinder node.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

79

The cylinder has three parts: the side, the top (Y = +height/2) and the bottom (Y = -height/2). Each part has an
associated SFBool field that indicates whether the part exists (TRUE) or does not exist (FALSE). Parts which do not
exist are not rendered and not eligible for intersection tests (e.g., collision detection or sensor activation).

Figure 6.4 -- Cylinder node

When a texture is applied to a cylinder, it is applied differently to the sides, top, and bottom. On the sides, the
texture wraps counterclockwise (from above) starting at the back of the cylinder. The texture has a vertical seam at
the back, intersecting the X=0 plane. For the top and bottom caps, a circle is cut out of the unit texture squares
centred at (0, +/- height/2, 0) with dimensions 2 × radius by 2 × radius. The top texture appears right side up when
the top of the cylinder is tilted toward the +Z-axis, and the bottom texture appears right side up when the top of the
cylinder is tilted toward the -Z-axis. TextureTransform affects the texture coordinates of the Cylinder node.

The Cylinder node's geometry requires outside faces only. When viewed from the inside the results are undefined.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

80

6.15 CylinderSensor

CylinderSensor {
 exposedField SFBool autoOffset TRUE
 exposedField SFFloat diskAngle 0.262 # (0,π/2)
 exposedField SFBool enabled TRUE
 exposedField SFFloat maxAngle -1 # [-2π,2π]
 exposedField SFFloat minAngle 0 # [-2π,2π]
 exposedField SFFloat offset 0 # (-∞,∞)
 eventOut SFBool isActive
 eventOut SFRotation rotation_changed
 eventOut SFVec3f trackPoint_changed
}

The CylinderSensor node maps pointer motion (e.g., a mouse or wand) into a rotation on an invisible cylinder that is
aligned with the Y-axis of the local coordinate system. The CylinderSensor uses the descendent geometry of its
parent node to determine whether it is liable to generate events.

The enabled exposed field enables and disables the CylinderSensor node. If TRUE, the sensor reacts appropriately
to user events. If FALSE, the sensor does not track user input or send events. If enabled receives a FALSE event and
isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive FALSE event. If enabled
receives a TRUE event the sensor is enabled and ready for user activation.

A CylinderSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for more
details on using the pointing device to activate the CylinderSensor.

Upon activation of the pointing device while indicating the sensor's geometry, an isActive TRUE event is sent. The
initial acute angle between the bearing vector and the local Y-axis of the CylinderSensor node determines whether
the sides of the invisible cylinder or the caps (disks) are used for manipulation. If the initial angle is less than the
diskAngle, the geometry is treated as an infinitely large disk lying in the local Y=0 plane and coincident with the
initial intersection point. Dragging motion is mapped into a rotation around the local +Y-axis vector of the sensor's
coordinate system. The perpendicular vector from the initial intersection point to the Y-axis defines zero rotation
about the Y-axis. For each subsequent position of the bearing, a rotation_changed event is sent that equals the sum
of the rotation about the +Y-axis vector (from the initial intersection to the new intersection) plus the offset value.
trackPoint_changed events reflect the unclamped drag position on the surface of this disk. When the pointing device
is deactivated and autoOffset is TRUE, offset is set to the last value of rotation_changed and an offset_changed
event is generated. See 4.6.7.4, Drag sensors, for a more general description of autoOffset and offset fields.

If the initial acute angle between the bearing vector and the local Y-axis of the CylinderSensor node is greater than
or equal to diskAngle, then the sensor behaves like a cylinder. The shortest distance between the point of intersection
(between the bearing and the sensor's geometry) and the Y-axis of the parent group's local coordinate system
determines the radius of an invisible cylinder used to map pointing device motion and marks the zero rotation value.
For each subsequent position of the bearing, a rotation_changed event is sent that equals the sum of the right-handed
rotation from the original intersection about the +Y-axis vector plus the offset value. trackPoint_changed events
reflect the unclamped drag position on the surface of the invisible cylinder. When the pointing device is deactivated
and autoOffset is TRUE, offset is set to the last rotation angle and an offset_changed event is generated. More details
are available in 4.6.7.4, Drag sensors.

When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until
it is released and generates an isActive FALSE event (other pointing-device sensors shall not generate events during
this time). Motion of the pointing device while isActive is TRUE is referred to as a "drag." If a 2D pointing device is
in use, isActive events will typically reflect the state of the primary button associated with the device (i.e., isActive is

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

81

TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device (e.g., a wand) is
in use, isActive events will typically reflect whether the pointer is within or in contact with the sensor's geometry.

While the pointing device is activated, trackPoint_changed and rotation_changed events are output and are
interpreted from pointing device motion based on the sensor's local coordinate system at the time of activation.
trackPoint_changed events represent the unclamped intersection points on the surface of the invisible cylinder or
disk. If the initial angle results in cylinder rotation (as opposed to disk behaviour) and if the pointing device is
dragged off the cylinder while activated, browsers may interpret this in a variety of ways (e.g., clamp all values to
the cylinder and continuing to rotate as the point is dragged away from the cylinder). Each movement of the pointing
device while isActive is TRUE generates trackPoint_changed and rotation_changed events.

The minAngle and maxAngle fields clamp rotation_changed events to a range of values. If minAngle is greater than
maxAngle, rotation_changed events are not clamped. The minAngle and maxAngle fields are restricted to the range
[-2π, 2π].

More information about this behaviour is described in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.16 DirectionalLight

DirectionalLight {
 exposedField SFFloat ambientIntensity 0 # [0,1]
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFVec3f direction 0 0 -1 # (-∞,∞)
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFBool on TRUE
}

The DirectionalLight node defines a directional light source that illuminates along rays parallel to a given 3-
dimensional vector. A description of the ambientIntensity, color, intensity, and on fields is in 4.6.6, Light sources.

The direction field specifies the direction vector of the illumination emanating from the light source in the local
coordinate system. Light is emitted along parallel rays from an infinite distance away. A directional light source
illuminates only the objects in its enclosing parent group. The light may illuminate everything within this coordinate
system, including all children and descendants of its parent group. The accumulated transformations of the parent
nodes affect the light.

DirectionalLight nodes do not attenuate with distance. A precise description of VRML's lighting equations is
contained in 4.14, Lighting model.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

82

6.17 ElevationGrid

ElevationGrid {
 eventIn MFFloat set_height
 exposedField SFNode color NULL
 exposedField SFNode normal NULL
 exposedField SFNode texCoord NULL
 field MFFloat height [] # (-∞,∞)
 field SFBool ccw TRUE
 field SFBool colorPerVertex TRUE
 field SFFloat creaseAngle 0 # [0,∞)
 field SFBool normalPerVertex TRUE
 field SFBool solid TRUE
 field SFInt32 xDimension 0 # [0,∞)
 field SFFloat xSpacing 1.0 # [0,∞)
 field SFInt32 zDimension 0 # [0,∞)
 field SFFloat zSpacing 1.0 # [0,∞)
}

The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0 plane of the local
coordinate system. The geometry is described by a scalar array of height values that specify the height of a surface
above each point of the grid.

The xDimension and zDimension fields indicate the number of elements of the grid height array in the X and Z
directions. Both xDimension and zDimension shall be greater than or equal to zero. If either the xDimension or the
zDimension is less than two, the ElevationGrid contains no quadrilaterals. The vertex locations for the rectangles are
defined by the height field and the xSpacing and zSpacing fields:

• The height field is an xDimension by zDimension array of scalar values representing the height above the
grid for each vertex.

• The xSpacing and zSpacing fields indicate the distance between vertices in the X and Z directions
respectively, and shall be greater than zero.

Thus, the vertex corresponding to the point P[i, j] on the grid is placed at:

 P[i,j].x = xSpacing × i
 P[i,j].y = height[i + j × xDimension]
 P[i,j].z = zSpacing × j

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and P[0,0] is height[0] units above/below the origin of the local
 coordinate system

The set_height eventIn allows the height MFFloat field to be changed to support animated ElevationGrid nodes.

The color field specifies per-vertex or per-quadrilateral colours for the ElevationGrid node depending on the value
of colorPerVertex. If the color field is NULL, the ElevationGrid node is rendered with the overall attributes of the
Shape node enclosing the ElevationGrid node (see 4.14, Lighting model).

The colorPerVertex field determines whether colours specified in the color field are applied to each vertex or each
quadrilateral of the ElevationGrid node. If colorPerVertex is FALSE and the color field is not NULL, the color field

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

83

shall specify a Color node containing at least (xDimension-1) × (zDimension-1) colours; one for each quadrilateral,
ordered as follows:

 QuadColor[i,j] = Color[i + j × (xDimension-1)]

 where 0 <= i < xDimension-1 and 0 <= j < zDimension-1,
 and QuadColor[i,j] is the colour for the quadrilateral defined
 by height[i+j × xDimension], height[(i+1)+j × xDimension],
 height[(i+1)+(j+1)× xDimension] and height[i+(j+1)× xDimension]

If colorPerVertex is TRUE and the color field is not NULL, the color field shall specify a Color node containing at
least xDimension × zDimension colours, one for each vertex, ordered as follows:

 VertexColor[i,j] = Color[i + j × xDimension]

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and VertexColor[i,j] is the colour for the vertex defined by
 height[i+j × xDimension]

The normal field specifies per-vertex or per-quadrilateral normals for the ElevationGrid node. If the normal field is
NULL, the browser shall automatically generate normals, using the creaseAngle field to determine if and how
normals are smoothed across the surface (see 4.6.3.5, Crease angle field).

The normalPerVertex field determines whether normals are applied to each vertex or each quadrilateral of the
ElevationGrid node depending on the value of normalPerVertex. If normalPerVertex is FALSE and the normal node
is not NULL, the normal field shall specify a Normal node containing at least (xDimension-1) × (zDimension-1)
normals; one for each quadrilateral, ordered as follows:

 QuadNormal[i,j] = Normal[i + j × (xDimension-1)]

 where 0 <= i < xDimension-1 and 0 <= j < zDimension-1,
 and QuadNormal[i,j] is the normal for the quadrilateral defined
 by height[i+j × xDimension], height[(i+1)+j × xDimension],
 height[(i+1)+(j+1)× xDimension] and height[i+(j+1)× xDimension]

If normalPerVertex is TRUE and the normal field is not NULL, the normal field shall specify a Normal node
containing at least xDimension × zDimension normals; one for each vertex, ordered as follows:

 VertexNormal[i,j] = Normal[i + j × xDimension]

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and VertexNormal[i,j] is the normal for the vertex defined
 by height[i+j×xDimension]

The texCoord field specifies per-vertex texture coordinates for the ElevationGrid node. If texCoord is NULL,
default texture coordinates are applied to the geometry. The default texture coordinates range from (0,0) at the first
vertex to (1,1) at the last vertex. The S texture coordinate is aligned with the positive X-axis, and the T texture
coordinate with positive Z-axis. If texCoord is not NULL, it shall specify a TextureCoordinate node containing at
least (xDimension) × (zDimension) texture coordinates; one for each vertex, ordered as follows:

 VertexTexCoord[i,j] = TextureCoordinate[i + j × xDimension]

 where 0 <= i < xDimension and 0 <= j < zDimension,
 and VertexTexCoord[i,j] is the texture coordinate for the vertex
 defined by height[i+j × xDimension]

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

84

The ccw, solid, and creaseAngle fields are described in 4.6.3, Shapes and geometry.

By default, the quadrilaterals are defined with a counterclockwise ordering. Hence, the Y-component of the normal
is positive. Setting the ccw field to FALSE reverses the normal direction. Backface culling is enabled when the solid
field is TRUE.

See Figure 6.5 for a depiction of the ElevationGrid node.

Figure 6.5 -- ElevationGrid node

6.18 Extrusion
Extrusion {
 eventIn MFVec2f set_crossSection
 eventIn MFRotation set_orientation
 eventIn MFVec2f set_scale
 eventIn MFVec3f set_spine
 field SFBool beginCap TRUE
 field SFBool ccw TRUE
 field SFBool convex TRUE
 field SFFloat creaseAngle 0 # [0,∞)
 field MFVec2f crossSection [1 1, 1 -1, -1 -1,
 -1 1, 1 1] # (-∞,∞)
 field SFBool endCap TRUE
 field MFRotation orientation 0 0 1 0 # [-1,1],(- ∞,∞)
 field MFVec2f scale 1 1 # (0,∞)
 field SFBool solid TRUE
 field MFVec3f spine [0 0 0, 0 1 0] # (-∞,∞)
}

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

85

6.18.1 Introduction

The Extrusion node specifies geometric shapes based on a two dimensional cross-section extruded along a three
dimensional spine in the local coordinate system. The cross-section can be scaled and rotated at each spine point to
produce a wide variety of shapes.

An Extrusion node is defined by:

a. a 2D crossSection piecewise linear curve (described as a series of connected vertices);

b. a 3D spine piecewise linear curve (also described as a series of connected vertices);

c. a list of 2D scale parameters;

d. a list of 3D orientation parameters.

6.18.2 Algorithmic description

Shapes are constructed as follows. The cross-section curve, which starts as a curve in the Y=0 plane, is first scaled
about the origin by the first scale parameter (first value scales in X, second value scales in Z). It is then translated by
the first spine point and oriented using the first orientation parameter (as explained later). The same procedure is
followed to place a cross-section at the second spine point, using the second scale and orientation values.
Corresponding vertices of the first and second cross-sections are then connected, forming a quadrilateral polygon
between each pair of vertices. This same procedure is then repeated for the rest of the spine points, resulting in a
surface extrusion along the spine.

The final orientation of each cross-section is computed by first orienting it relative to the spine segments on either
side of point at which the cross-section is placed. This is known as the spine-aligned cross-section plane (SCP), and
is designed to provide a smooth transition from one spine segment to the next (see Figure 6.6). The SCP is then
rotated by the corresponding orientation value. This rotation is performed relative to the SCP. For example, to
impart twist in the cross-section, a rotation about the Y-axis (0 1 0) would be used. Other orientations are valid and
rotate the cross-section out of the SCP.

The SCP is computed by first computing its Y-axis and Z-axis, then taking the cross product of these to determine
the X-axis. These three axes are then used to determine the rotation value needed to rotate the Y=0 plane to the SCP.
This results in a plane that is the approximate tangent of the spine at each point, as shown in Figure 6.6. First the Y-
axis is determined, as follows:

 Let n be the number of spines and let i be the index variable satisfying 0 <= i < n:

a. For all points other than the first or last: The Y-axis for spine[i] is found by normalizing the vector defined
by (spine[i+1] - spine[i-1]).

b. If the spine curve is closed: The SCP for the first and last points is the same and is found using (spine[1] -
spine[n-2]) to compute the Y-axis.

c. If the spine curve is not closed: The Y-axis used for the first point is the vector from spine[0] to spine[1],
and for the last it is the vector from spine[n-2] to spine[n-1].

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

86

Figure 6.6 -- Spine-aligned cross-section plane at a spine point.

The Z-axis is determined as follows:

d. For all points other than the first or last: Take the following cross-product:

Z = (spine[i+1] - spine[i]) × (spine[i-1] - spine[i])

e. If the spine curve is closed: The SCP for the first and last points is the same and is found by taking the
following cross-product:

Z = (spine[1] - spine[0]) × (spine[n-2] - spine[0])

f. If the spine curve is not closed: The Z-axis used for the first spine point is the same as the Z-axis for
spine[1]. The Z-axis used for the last spine point is the same as the Z-axis for spine[n-2].

g. After determining the Z-axis, its dot product with the Z-axis of the previous spine point is computed. If this
value is negative, the Z-axis is flipped (multiplied by -1). In most cases, this prevents small changes in the
spine segment angles from flipping the cross-section 180 degrees.

Once the Y- and Z-axes have been computed, the X-axis can be calculated as their cross-product.

6.18.3 Special cases

If the number of scale or orientation values is greater than the number of spine points, the excess values are ignored.
If they contain one value, it is applied at all spine points. The results are undefined if the number of scale or
orientation values is greater than one but less than the number of spine points. The scale values shall be positive.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

87

If the three points used in computing the Z-axis are collinear, the cross-product is zero so the value from the
previous point is used instead.

If the Z-axis of the first point is undefined (because the spine is not closed and the first two spine segments are
collinear) then the Z-axis for the first spine point with a defined Z-axis is used.

If the entire spine is collinear, the SCP is computed by finding the rotation of a vector along the positive Y-axis (v1)
to the vector formed by the spine points (v2). The Y=0 plane is then rotated by this value.

If two points are coincident, they both have the same SCP. If each point has a different orientation value, then the
surface is constructed by connecting edges of the cross-sections as normal. This is useful in creating revolved
surfaces.

Note: combining coincident and non-coincident spine segments, as well as other combinations, can lead to
interpenetrating surfaces which the extrusion algorithm makes no attempt to avoid.

6.18.4 Common cases

The following common cases are among the effects which are supported by the Extrusion node:

Surfaces of revolution:

If the cross-section is an approximation of a circle and the spine is straight, the Extrusion is equivalent to a
surface of revolution, where the scale parameters define the size of the cross-section along the spine.

Uniform extrusions:

If the scale is (1, 1) and the spine is straight, the cross-section is extruded uniformly without twisting or scaling
along the spine. The result is a cylindrical shape with a uniform cross section.

Bend/twist/taper objects:

These shapes are the result of using all fields. The spine curve bends the extruded shape defined by the cross-
section, the orientation parameters (given as rotations about the Y-axis) twist it around the spine, and the scale
parameters taper it (by scaling about the spine).

6.18.5 Other fields

Extrusion has three parts: the sides, the beginCap (the surface at the initial end of the spine) and the endCap (the
surface at the final end of the spine). The caps have an associated SFBool field that indicates whether each exists
(TRUE) or doesn't exist (FALSE).

When the beginCap or endCap fields are specified as TRUE, planar cap surfaces will be generated regardless of
whether the crossSection is a closed curve. If crossSection is not a closed curve, the caps are generated by adding a
final point to crossSection that is equal to the initial point. An open surface can still have a cap, resulting (for a
simple case) in a shape analogous to a soda can sliced in half vertically. These surfaces are generated even if spine is
also a closed curve. If a field value is FALSE, the corresponding cap is not generated.

Texture coordinates are automatically generated by Extrusion nodes. Textures are mapped so that the coordinates
range in the U direction from 0 to 1 along the crossSection curve (with 0 corresponding to the first point in
crossSection and 1 to the last) and in the V direction from 0 to 1 along the spine curve (with 0 corresponding to the
first listed spine point and 1 to the last). If either the endCap or beginCap exists, the crossSection curve is uniformly
scaled and translated so that the larger dimension of the cross-section (X or Z) produces texture coordinates that
range from 0.0 to 1.0. The beginCap and endCap textures' S and T directions correspond to the X and Z directions in
which the crossSection coordinates are defined.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

88

The browser shall automatically generate normals for the Extrusion node,using the creaseAngle field to determine if
and how normals are smoothed across the surface. Normals for the caps are generated along the Y-axis of the SCP,
with the ordering determined by viewing the cross-section from above (looking along the negative Y-axis of the
SCP). By default, a beginCap with a counterclockwise ordering shall have a normal along the negative Y-axis. An
endCap with a counterclockwise ordering shall have a normal along the positive Y-axis.

Each quadrilateral making up the sides of the extrusion are ordered from the bottom cross-section (the one at the
earlier spine point) to the top. So, one quadrilateral has the points:

 spine[0](crossSection[0], crossSection[1])
 spine[1](crossSection[1], crossSection[0])

in that order. By default, normals for the sides are generated as described in 4.6.3, Shapes and geometry.

For instance, a circular crossSection with counter-clockwise ordering and the default spine form a cylinder. With
solid TRUE and ccw TRUE, the cylinder is visible from the outside. Changing ccw to FALSE makes it visible from
the inside.

The ccw, solid, convex, and creaseAngle fields are described in 4.6.3, Shapes and geometry.

6.19 Fog

Fog {
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFString fogType "LINEAR"
 exposedField SFFloat visibilityRange 0 # [0,∞)
 eventIn SFBool set_bind
 eventOut SFBool isBound
}

The Fog node provides a way to simulate atmospheric effects by blending objects with the colour specified by the
color field based on the distances of the various objects from the viewer. The distances are calculated in the
coordinate space of the Fog node. The visibilityRange specifies the distance in metres (in the local coordinate
system) at which objects are totally obscured by the fog. Objects located outside the visibilityRange from the viewer
are drawn with a constant colour of color. Objects very close to the viewer are blended very little with the fog color.
A visibilityRange of 0.0 disables the Fog node. The visibilityRange is affected by the scaling transformations of the
Fog node's parents; translations and rotations have no affect on visibilityRange. Values of the visibilityRange field
shall be in the range [0,∞).

Since Fog nodes are bindable children nodes (see 4.6.10, Bindable children nodes), a Fog node stack exists, in which
the top-most Fog node on the stack is currently active. To push a Fog node onto the top of the stack, a TRUE value
is sent to the set_bind eventIn. Once active, the Fog node is bound to the browser view. A FALSE value sent to
set_bind, pops the Fog node from the stack and unbinds it from the browser viewer. More details on the Fog node
stack can be found in 4.6.10, Bindable children nodes.

The fogType field controls how much of the fog colour is blended with the object as a function of distance. If
fogType is "LINEAR", the amount of blending is a linear function of the distance, resulting in a depth cueing effect.
If fogType is "EXPONENTIAL," an exponential increase in blending is used, resulting in a more natural fog
appearance.

The effect of fog on lighting calculations is described in 4.14, Lighting model.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

89

6.20 FontStyle

FontStyle {
 field MFString family "SERIF"
 field SFBool horizontal TRUE
 field MFString justify "BEGIN"
 field SFString language ""
 field SFBool leftToRight TRUE
 field SFFloat size 1.0 # (0,∞)
 field SFFloat spacing 1.0 # [0,∞)
 field SFString style "PLAIN"
 field SFBool topToBottom TRUE
}

6.20.1 Introduction

The FontStyle node defines the size, family, and style used for Text nodes, as well as the direction of the text strings
and any language-specific rendering techniques used for non-English text. See 6.47, Text, for a description of the
Text node.

The size field specifies the nominal height, in the local coordinate system of the Text node, of glyphs rendered and
determines the spacing of adjacent lines of text. Values of the size field shall be greater than zero.

The spacing field determines the line spacing between adjacent lines of text. The distance between the baseline of
each line of text is (spacing × size) in the appropriate direction (depending on other fields described below). The
effects of the size and spacing field are depicted in Figure 6.7 (spacing greater than 1.0). Values of the spacing field
shall be non-negative.

Figure 6.7 -- Text size and spacing fields

6.20.2 Font family and style

Font attributes are defined with the family and style fields. The browser shall map the specified font attributes to an
appropriate available font as described below.

The family field contains a case-sensitive MFString value that specifies a sequence of font family names in
preference order. The browser shall search the MFString value for the first font family name matching a supported
font family. If none of the string values matches a supported font family, the default font family "SERIF" shall be
used. All browsers shall support at least "SERIF" (the default) for a serif font such as Times Roman; "SANS" for a
sans-serif font such as Helvetica; and "TYPEWRITER" for a fixed-pitch font such as Courier. An empty family
value is identical to ["SERIF"].

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

90

The style field specifies a case-sensitive SFString value that may be "PLAIN" (the default) for default plain type;
"BOLD" for boldface type; "ITALIC" for italic type; or "BOLDITALIC" for bold and italic type. An empty
style value ("") is identical to "PLAIN".

6.20.3 Direction and justification

The horizontal, leftToRight, and topToBottom fields indicate the direction of the text. The horizontal field indicates
whether the text advances horizontally in its major direction (horizontal = TRUE, the default) or vertically in its
major direction (horizontal = FALSE). The leftToRight and topToBottom fields indicate direction of text advance in
the major (characters within a single string) and minor (successive strings) axes of layout. Which field is used for
the major direction and which is used for the minor direction is determined by the horizontal field.

For horizontal text (horizontal = TRUE), characters on each line of text advance in the positive X direction if
leftToRight is TRUE or in the negative X direction if leftToRight is FALSE. Characters are advanced according to
their natural advance width. Each line of characters is advanced in the negative Y direction if topToBottom is TRUE
or in the positive Y direction if topToBottom is FALSE. Lines are advanced by the amount of size × spacing.

For vertical text (horizontal = FALSE), characters on each line of text advance in the negative Y direction if
topToBottom is TRUE or in the positive Y direction if topToBottom is FALSE. Characters are advanced according
to their natural advance height. Each line of characters is advanced in the positive X direction if leftToRight is
TRUE or in the negative X direction if leftToRight is FALSE. Lines are advanced by the amount of size × spacing.

The justify field determines alignment of the above text layout relative to the origin of the object coordinate system.
The justify field is an MFString which can contain 2 values. The first value specifies alignment along the major axis
and the second value specifies alignment along the minor axis, as determined by the horizontal field. An empty
justify value ("") is equivalent to the default value. If the second string, minor alignment, is not specified, minor
alignment defaults to the value "FIRST". Thus, justify values of "", "BEGIN", and ["BEGIN" "FIRST"] are
equivalent.

The major alignment is along the X-axis when horizontal is TRUE and along the Y-axis when horizontal is FALSE.
The minor alignment is along the Y-axis when horizontal is TRUE and along the X-axis when horizontal is FALSE.
The possible values for each enumerant of the justify field are "FIRST", "BEGIN", "MIDDLE", and "END".
For major alignment, each line of text is positioned individually according to the major alignment enumerant. For
minor alignment, the block of text representing all lines together is positioned according to the minor alignment
enumerant. Tables 6.2-6.5 describe the behaviour in terms of which portion of the text is at the origin

Table 6.2 -- Major Alignment, horizontal = TRUE

justify Enumerant leftToRight = TRUE leftToRight = FALSE

 FIRST Left edge of each line Right edge of each line

 BEGIN Left edge of each line Right edge of each line

 MIDDLE Centred about X-axis Centred about X-axis

 END Right edge of each line Left edge of each line

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

91

Table 6.3 -- Major Alignment, horizontal = FALSE

justify Enumerant topToBottom = TRUE topToBottom = FALSE

 FIRST Top edge of each line Bottom edge of each line

 BEGIN Top edge of each line Bottom edge of each line

 MIDDLE Centred about Y-axis Centre about Y-axis

 END Bottom edge of each line Top edge of each line

Table 6.4 -- Minor Alignment, horizontal = TRUE

justify Enumerant topToBottom = TRUE topToBottom = FALSE

 FIRST Baseline of first line Baseline of first line

 BEGIN Top edge of first line Bottom edge of first line

 MIDDLE Centred about Y-axis Centred about Y-axis

 END Bottom edge of last line Top edge of last line

Table 6.5 -- Minor Alignment, horizontal = FALSE

justify Enumerant leftToRight = TRUE leftToRight = FALSE

 FIRST Left edge of first line Right edge of first line

 BEGIN Left edge of first line Right edge of first line

 MIDDLE Centred about X-axis Centred about X-axis

 END Right edge of last line Left edge of last line

The default minor alignment is "FIRST". This is a special case of minor alignment when horizontal is TRUE. Text
starts at the baseline at the Y-axis. In all other cases, "FIRST" is identical to "BEGIN". In Tables 6.6 and 6.7, each
colour-coded cross-hair indicates where the X-axis and Y-axis shall be in relation to the text. Figure 6.8 describes
the symbols used in Tables 6.6 and 6.7.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

92

Figure 6.8 -- Key for Tables 6.6 and 6.7

Table 6.6 -- horizontal = TRUE

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

93

Table 6.7 -- horizontal = FALSE

6.20.4 Language

The language field specifies the context of the language for the text string. Due to the multilingual nature of the
ISO/IEC 10646-1:1993, the language field is needed to provide a proper language attribute of the text string. The
format is based on RFC 1766: language[_territory] 2.[1766]. The value for the language tag is based on ISO
639:1988 (e.g., 'zh' for Chinese, 'jp' for Japanese, and 'sc' for Swedish.) The territory tag is based on ISO 3166:1993
country codes (e.g., 'TW' for Taiwan and 'CN' for China for the 'zh' Chinese language tag). If the language field is
empty (""), local language bindings are used.

See 2, Normative references, for more information on RFC 1766 (2.[1766]), ISO/IEC 10646:1993 (2.[UTF8]),
ISO/IEC 639:1998 (2.[I639]), and ISO 3166:1993 (2.[I3166]).

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

94

6.21 Group

Group {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

A Group node contains children nodes without introducing a new transformation. It is equivalent to a Transform
node containing an identity transform.

More details on the children, addChildren, and removeChildren fields and eventIns can be found in 4.6.5, Grouping
and children nodes.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Group node's children. This is a hint
that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than
the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the bounding
box is not specified and, if needed, is calculated by the browser. A description of the bboxCenter and bboxSize fields
is contained in 4.6.4, Bounding boxes.

6.22 ImageTexture

ImageTexture {
 exposedField MFString url []
 field SFBool repeatS TRUE
 field SFBool repeatT TRUE
}

The ImageTexture node defines a texture map by specifying an image file and general parameters for mapping to
geometry. Texture maps are defined in a 2D coordinate system (s, t) that ranges from [0.0, 1.0] in both directions.
The bottom edge of the image corresponds to the S-axis of the texture map, and left edge of the image corresponds
to the T-axis of the texture map. The lower-left pixel of the image corresponds to s=0, t=0, and the top-right pixel of
the image corresponds to s=1, t=1. These relationships are depicted in Figure 6.9.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

95

Figure 6.9 -- Texture map coordinate system

The texture is read from the URL specified by the url field. When the url field contains no values ([]), texturing is
disabled. Browsers shall support the JPEG (see 2. [JPEG]) and PNG (see 2. [PNG]) image file formats. In addition,
browsers may support other image formats (e.g. CGM, 2. [CGM]) which can be rendered into a 2D image. Support
for the GIF format (see E. [GIF]) is also recommended (including transparency). Details on the url field can be
found in 4.5, VRML and the World Wide Web.

See 4.6.11, Texture maps, for a general description of texture maps.

See 4.14, Lighting model, for a description of lighting equations and the interaction between textures, materials, and
geometry appearance.

The repeatS and repeatT fields specify how the texture wraps in the S and T directions. If repeatS is TRUE (the
default), the texture map is repeated outside the [0.0, 1.0] texture coordinate range in the S direction so that it fills
the shape. If repeatS is FALSE, the texture coordinates are clamped in the S direction to lie within the [0.0, 1.0]
range. The repeatT field is analogous to the repeatS field.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

96

6.23 IndexedFaceSet

IndexedFaceSet {
 eventIn MFInt32 set_colorIndex
 eventIn MFInt32 set_coordIndex
 eventIn MFInt32 set_normalIndex
 eventIn MFInt32 set_texCoordIndex
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
 exposedField SFNode normal NULL
 exposedField SFNode texCoord NULL
 field SFBool ccw TRUE
 field MFInt32 colorIndex [] # [-1,∞)
 field SFBool colorPerVertex TRUE
 field SFBool convex TRUE
 field MFInt32 coordIndex [] # [-1,∞)
 field SFFloat creaseAngle 0 # [0,∞)
 field MFInt32 normalIndex [] # [-1,∞)
 field SFBool normalPerVertex TRUE
 field SFBool solid TRUE
 field MFInt32 texCoordIndex [] # [-1,∞)
}

The IndexedFaceSet node represents a 3D shape formed by constructing faces (polygons) from vertices listed in the
coord field. The coord field contains a Coordinate node that defines the 3D vertices referenced by the coordIndex
field. IndexedFaceSet uses the indices in its coordIndex field to specify the polygonal faces by indexing into the
coordinates in the Coordinate node. An index of "-1" indicates that the current face has ended and the next one
begins. The last face may be (but does not have to be) followed by a "-1" index. If the greatest index in the
coordIndex field is N, the Coordinate node shall contain N+1 coordinates (indexed as 0 to N). Each face of the
IndexedFaceSet shall have:

a. at least three non-coincident vertices;

b. vertices that define a planar polygon;

c. vertices that define a non-self-intersecting polygon.

Otherwise, The results are undefined.

The IndexedFaceSet node is specified in the local coordinate system and is affected by the transformations of its
ancestors.

Descriptions of the coord, normal, and texCoord fields are provided in the Coordinate, Normal, and
TextureCoordinate nodes, respectively.

Details on lighting equations and the interaction between color field, normal field, textures, materials, and
geometries are provided in 4.14, Lighting model.

If the color field is not NULL, it shall contain a Color node whose colours are applied to the vertices or faces of the
IndexedFaceSet as follows:

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

97

d. If colorPerVertex is FALSE, colours are applied to each face, as follows:

1. If the colorIndex field is not empty, then one colour is used for each face of the IndexedFaceSet.
There shall be at least as many indices in the colorIndex field as there are faces in the
IndexedFaceSet. If the greatest index in the colorIndex field is N, then there shall be N+1 colours
in the Color node. The colorIndex field shall not contain any negative entries.

2. If the colorIndex field is empty, then the colours in the Color node are applied to each face of the
IndexedFaceSet in order. There shall be at least as many colours in the Color node as there are
faces.

e. If colorPerVertex is TRUE, colours are applied to each vertex, as follows:

1. If the colorIndex field is not empty, then colours are applied to each vertex of the IndexedFaceSet
in exactly the same manner that the coordIndex field is used to choose coordinates for each vertex
from the Coordinate node. The colorIndex field shall contain at least as many indices as the
coordIndex field, and shall contain end-of-face markers (-1) in exactly the same places as the
coordIndex field. If the greatest index in the colorIndex field is N, then there shall be N+1 colours
in the Color node.

2. If the colorIndex field is empty, then the coordIndex field is used to choose colours from the Color
node. If the greatest index in the coordIndex field is N, then there shall be N+1 colours in the
Color node.

If the color field is NULL, the geometry shall be rendered normally using the Material and texture defined in the
Appearance node (see 4.14, Lighting model, for details).

If the normal field is not NULL, it shall contain a Normal node whose normals are applied to the vertices or faces of
the IndexedFaceSet in a manner exactly equivalent to that described above for applying colours to vertices/faces
(where normalPerVertex corresponds to colorPerVertex and normalIndex corresponds to colorIndex). If the normal
field is NULL, the browser shall automatically generate normals, using creaseAngle to determine if and how
normals are smoothed across shared vertices (see 4.6.3.5, Crease angle field).

If the texCoord field is not NULL, it shall contain a TextureCoordinate node. The texture coordinates in that node
are applied to the vertices of the IndexedFaceSet as follows:

f. If the texCoordIndex field is not empty, then it is used to choose texture coordinates for each vertex of the
IndexedFaceSet in exactly the same manner that the coordIndex field is used to choose coordinates for each
vertex from the Coordinate node. The texCoordIndex field shall contain at least as many indices as the
coordIndex field, and shall contain end-of-face markers (-1) in exactly the same places as the coordIndex
field. If the greatest index in the texCoordIndex field is N, then there shall be N+1 texture coordinates in the
TextureCoordinate node.

g. If the texCoordIndex field is empty, then the coordIndex array is used to choose texture coordinates from
the TextureCoordinate node. If the greatest index in the coordIndex field is N, then there shall be N+1
texture coordinates in the TextureCoordinate node.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local coordinate system
bounding box of the shape. The longest dimension of the bounding box defines the S coordinates, and the next
longest defines the T coordinates. If two or all three dimensions of the bounding box are equal, ties shall be broken
by choosing the X, Y, or Z dimension in that order of preference. The value of the S coordinate ranges from 0 to 1,
from one end of the bounding box to the other. The T coordinate ranges between 0 and the ratio of the second
greatest dimension of the bounding box to the greatest dimension. Figure 6.10 illustrates the default texture
coordinates for a simple box shaped IndexedFaceSet with an X dimension twice as large as the Z dimension and
four times as large as the Y dimension. Figure 6.11 illustrates the original texture image used on the IndexedFaceSet
used in Figure 6.10.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

98

Figure 6.10 -- IndexedFaceSet texture default mapping

Figure 6.11 -- ImageTexture for IndexedFaceSet in Figure 6.10

Subclause 4.6.3, Shapes and geometry, provides a description of the ccw, solid, convex, and creaseAngle fields.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

99

6.24 IndexedLineSet

IndexedLineSet {
 eventIn MFInt32 set_colorIndex
 eventIn MFInt32 set_coordIndex
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
 field MFInt32 colorIndex [] # [-1,∞)
 field SFBool colorPerVertex TRUE
 field MFInt32 coordIndex [] # [-1,∞)
}

The IndexedLineSet node represents a 3D geometry formed by constructing polylines from 3D vertices specified in
the coord field. IndexedLineSet uses the indices in its coordIndex field to specify the polylines by connecting
vertices from the coord field. An index of "-1" indicates that the current polyline has ended and the next one begins.
The last polyline may be (but does not have to be) followed by a "-1". IndexedLineSet is specified in the local
coordinate system and is affected by the transformations of its ancestors.

The coord field specifies the 3D vertices of the line set and contains a Coordinate node.

Lines are not lit, are not texture-mapped, and do not participate in collision detection. The width of lines is
implementation dependent and each line segment is solid (i.e., not dashed).

If the color field is not NULL, it shall contain a Color node. The colours are applied to the line(s) as follows:

a. If colorPerVertex is FALSE:

1. If the colorIndex field is not empty, one colour is used for each polyline of the IndexedLineSet.
There shall be at least as many indices in the colorIndex field as there are polylines in the
IndexedLineSet. If the greatest index in the colorIndex field is N, there shall be N+1 colours in the
Color node. The colorIndex field shall not contain any negative entries.

2. If the colorIndex field is empty, the colours from the Color node are applied to each polyline of
the IndexedLineSet in order. There shall be at least as many colours in the Color node as there are
polylines.

b. If colorPerVertex is TRUE:

1. If the colorIndex field is not empty, colours are applied to each vertex of the IndexedLineSet in
exactly the same manner that the coordIndex field is used to supply coordinates for each vertex
from the Coordinate node. The colorIndex field shall contain at least as many indices as the
coordIndex field and shall contain end-of-polyline markers (-1) in exactly the same places as the
coordIndex field. If the greatest index in the colorIndex field is N, there shall be N+1 colours in
the Color node.

2. If the colorIndex field is empty, the coordIndex field is used to choose colours from the Color
node. If the greatest index in the coordIndex field is N, there shall be N+1 colours in the Color
node.

If the color field is NULL and there is a Material defined for the Appearance affecting this IndexedLineSet, the
emissiveColor of the Material shall be used to draw the lines. Details on lighting equations as they affect
IndexedLineSet nodes are described in 4.14, Lighting model.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

100

6.25 Inline

Inline {
 exposedField MFString url []
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Inline node is a grouping node that reads its children data from a location in the World Wide Web. Exactly
when its children are read and displayed is not defined (e.g. reading the children may be delayed until the Inline
node's bounding box is visible to the viewer). The url field specifies the URL containing the children. An Inline
node with an empty URL does nothing.

Each specified URL shall refer to a valid VRML file that contains a list of children nodes, prototypes, and routes at
the top level as described in 4.6.5, Grouping and children nodes. The results are undefined if the URL refers to a file
that is not VRML or if the VRML file contains non-children nodes at the top level.

If multiple URLs are specified, the browser may display a URL of a lower preference VRML file while it is
obtaining, or if it is unable to obtain, the higher preference VRML file. Details on the url field and preference order
can be found in 4.5, VRML and the World Wide Web.

The results are undefined if the contents of the URL change after it has been loaded.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Inline node's children. This is a hint
that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than
the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the bounding
box is not specified and if needed shall be calculated by the browser. A description of the bboxCenter and bboxSize
fields is in 4.6.4, Bounding boxes.

6.26 LOD

LOD {
 exposedField MFNode level []
 field SFVec3f center 0 0 0 # (-∞,∞)
 field MFFloat range [] # (0,∞)
}

The LOD node specifies various levels of detail or complexity for a given object, and provides hints allowing
browsers to automatically choose the appropriate version of the object based on the distance from the user. The level
field contains a list of nodes that represent the same object or objects at varying levels of detail, ordered from
highest level of detail to the lowest level of detail. The range field specifies the ideal distances at which to switch
between the levels. Subclause 4.6.5, Grouping and children nodes, contains details on the types of nodes that are
legal values for level.

The center field is a translation offset in the local coordinate system that specifies the centre of the LOD node for
distance calculations.

The number of nodes in the level field shall exceed the number of values in the range field by one (i.e., N+1 level
values for N range values). The range field contains monotonic increasing values that shall be greater than zero. In

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

101

order to calculate which level to display, first the distance is calculated from the viewer's location, transformed into
the local coordinate system of the LOD node (including any scaling transformations), to the center point of the LOD
node. Then, the LOD node evaluates the step function L(d) to choose a level for a given value of d (where d is the
distance from the viewer position to the centre of the LOD node).

Let n ranges, R0, R1, R2, ..., Rn-1, partition the domain (0, +infinity) into n+1 subintervals given by (0, R0), [R0, R1)... ,
[Rn-1, +infinity). Also, let n levels L0, L1, L2, ..., Ln-1 be the values of the step function function L(d). The level node,
L(d), for a given distance d is defined as follows:

 L(d) = L0, if d < R0,
 = Li+1, if Ri <= d < Ri+1, for -1 < i < n-1,
 = Ln-1, if d >= Rn-1.

Specifying too few levels will result in the last level being used repeatedly for the lowest levels of detail. If more
levels than ranges are specified, the extra levels are ignored. An empty range field is an exception to this rule. This
case is a hint to the browser that it may choose a level automatically to maintain a constant display rate. Each value
in the range field shall be greater than the previous value.

LOD nodes are evaluated top-down in the scene graph. Only the descendants of the currently selected level are
rendered. All nodes under an LOD node continue to receive and send events regardless of which LOD node's level is
active. For example, if an active TimeSensor node is contained within an inactive level of an LOD node, the
TimeSensor node sends events regardless of the LOD node's state.

6.27 Material

Material {
 exposedField SFFloat ambientIntensity 0.2 # [0,1]
 exposedField SFColor diffuseColor 0.8 0.8 0.8 # [0,1]
 exposedField SFColor emissiveColor 0 0 0 # [0,1]
 exposedField SFFloat shininess 0.2 # [0,1]
 exposedField SFColor specularColor 0 0 0 # [0,1]
 exposedField SFFloat transparency 0 # [0,1]
}

The Material node specifies surface material properties for associated geometry nodes and is used by the VRML
lighting equations during rendering. Subclause 4.14, Lighting model, contains a detailed description of the VRML
lighting model equations.

All of the fields in the Material node range from 0.0 to 1.0.

The fields in the Material node determine how light reflects off an object to create colour:

a. The ambientIntensity field specifies how much ambient light from light sources this surface shall reflect.
Ambient light is omnidirectional and depends only on the number of light sources, not their positions with
respect to the surface. Ambient colour is calculated as ambientIntensity × diffuseColor.

b. The diffuseColor field reflects all VRML light sources depending on the angle of the surface with respect to
the light source. The more directly the surface faces the light, the more diffuse light reflects.

c. The emissiveColor field models "glowing" objects. This can be useful for displaying pre-lit models (where
the light energy of the room is computed explicitly), or for displaying scientific data.

d. The specularColor and shininess fields determine the specular highlights (e.g., the shiny spots on an apple).
When the angle from the light to the surface is close to the angle from the surface to the viewer, the

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

102

specularColor is added to the diffuse and ambient colour calculations. Lower shininess values produce soft
glows, while higher values result in sharper, smaller highlights.

e. The transparency field specifies how "clear" an object is, with 1.0 being completely transparent, and 0.0
completely opaque.

6.28 MovieTexture

MovieTexture {
 exposedField SFBool loop FALSE
 exposedField SFFloat speed 1.0 # (-∞,∞)
 exposedField SFTime startTime 0 # (-∞,∞)
 exposedField SFTime stopTime 0 # (-∞,∞)
 exposedField MFString url []
 field SFBool repeatS TRUE
 field SFBool repeatT TRUE
 eventOut SFTime duration_changed
 eventOut SFBool isActive
}

The MovieTexture node defines a time dependent texture map (contained in a movie file) and parameters for
controlling the movie and the texture mapping. A MovieTexture node can also be used as the source of sound data
for a Sound node. In this special case, the MovieTexture node is not used for rendering.

Texture maps are defined in a 2D coordinate system (s, t) that ranges from 0.0 to 1.0 in both directions. The bottom
edge of the image corresponds to the S-axis of the texture map, and left edge of the image corresponds to the T-axis
of the texture map. The lower-left pixel of the image corresponds to s=0.0, t=0.0, and the top-right pixel of the
image corresponds to s=1.0, t=1.0. Figure 6.12 depicts the texture map coordinate system of the MovieTexture.

Figure 6.12 -- MovieTexture node coordinate system

The url field that defines the movie data shall support MPEG1-Systems (audio and video) or MPEG1-Video (video-
only) movie file formats 2.[MPEG]. Details on the url field can be found in 4.5, VRML and the World Wide Web.

MovieTexture nodes can be referenced by an Appearance node's texture field (as a movie texture) and by a Sound
node's source field (as an audio source only).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

103

See 4.6.11, Texture maps, for a general description of texture maps.

4.14, Lighting model, contains details on lighting equations and the interaction between textures, materials, and
geometries.

As soon as the movie is loaded, a duration_changed eventOut is sent. This indicates the duration of the movie in
seconds. This eventOut value can be read (for instance, by a Script node) to determine the duration of a movie. A
value of "-1" implies the movie has not yet loaded or the value is unavailable for some reason.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the MovieTexture
node, are discussed in detail in the 4.6.9, Time-dependent nodes, section. The cycle of a MovieTexture node is the
length of time in seconds for one playing of the movie at the specified speed.

The speed exposedField indicates how fast the movie shall be played. A speed of 2 indicates the movie plays twice
as fast. The duration_changed output is not affected by the speed exposedField. set_speed events are ignored while
the movie is playing. A negative speed implies that the movie will play backwards.

If a MovieTexture node is inactive when the movie is first loaded, frame 0 of the movie texture is displayed if speed
is non-negative or the last frame of the movie texture is shown if speed is negative (see 4.11.3, Discrete and
continuous changes). A MovieTexture node shall display frame 0 if speed = 0. For positive values of speed, an
active MovieTexture node displays the frame at movie time t as follows (i.e., in the movie's local time system with
frame 0 at time 0 with speed = 1):

 t = (now - startTime) modulo (duration/speed)

If speed is negative, the MovieTexture node displays the frame at movie time:

 t = duration - ((now - startTime) modulo |duration/speed|)

When a MovieTexture node becomes inactive, the frame corresponding to the time at which the MovieTexture
became inactive will remain as the texture.

6.29 NavigationInfo

NavigationInfo {
 eventIn SFBool set_bind
 exposedField MFFloat avatarSize [0.25, 1.6, 0.75] # [0,∞)
 exposedField SFBool headlight TRUE
 exposedField SFFloat speed 1.0 # [0,∞)
 exposedField MFString type ["WALK", "ANY"]
 exposedField SFFloat visibilityLimit 0.0 # [0,∞)
 eventOut SFBool isBound
}

The NavigationInfo node contains information describing the physical characteristics of the viewer's avatar and
viewing model. NavigationInfo node is a bindable node (see 4.6.10, Bindable children nodes). Thus, there exists a
NavigationInfo node stack in which the top-most NavigationInfo node on the stack is the currently bound
NavigationInfo node. The current NavigationInfo node is considered to be a child of the current Viewpoint node
regardless of where it is initially located in the VRML file. Whenever the current Viewpoint nodes changes, the
current NavigationInfo node shall be re-parented to it by the browser. Whenever the current NavigationInfo node
changes, the new NavigationInfo node shall be re-parented to the current Viewpoint node by the browser.

If a TRUE value is sent to the set_bind eventIn of a NavigationInfo node, the node is pushed onto the top of the
NavigationInfo node stack. When a NavigationInfo node is bound, the browser uses the fields of the NavigationInfo

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

104

node to set the navigation controls of its user interface and the NavigationInfo node is conceptually re-parented
under the currently bound Viewpoint node. All subsequent scaling changes to the current Viewpoint node's
coordinate system automatically change aspects (see below) of the NavigationInfo node values used in the browser
(e.g., scale changes to any ancestors' transformations). A FALSE value sent to set_bind pops the NavigationInfo
node from the stack, results in an isBound FALSE event, and pops to the next entry in the stack which shall be re-
parented to the current Viewpoint node. 4.6.10, Bindable children nodes, has more details on binding stacks.

The type field specifies an ordered list of navigation paradigms that specify a combination of navigation types and
the initial navigation type. The navigation type of the currently bound NavigationInfo node determines the user
interface capabilities of the browser. For example, if the currently bound NavigationInfo node's type is "WALK", the
browser shall present a WALK navigation user interface paradigm (see below for description of WALK). Browsers
shall recognize and support at least the following navigation types: "ANY", "WALK", "EXAMINE", "FLY", and
"NONE".

If "ANY" does not appear in the type field list of the currently bound NavigationInfo, the browser's navigation user
interface shall be restricted to the recognized navigation types specified in the list. In this case, browsers shall not
present a user interface that allows the navigation type to be changed to a type not specified in the list. However, if
any one of the values in the type field are "ANY", the browser may provide any type of navigation interface, and
allow the user to change the navigation type dynamically. Furthermore, the first recognized type in the list shall be
the initial navigation type presented by the browser's user interface.

ANY navigation specifies that the browser may choose the navigation paradigm that best suits the content and
provide a user interface to allow the user to change the navigation paradigm dynamically. The results are undefined
if the currently bound NavigationInfo's type value is "ANY" and Viewpoint transitions (see 6.53, Viewpoint) are
triggered by the Anchor node (see 6.2, Anchor) or the loadURL()scripting method (see
4.12.10, Browser script interface).

WALK navigation is used for exploring a virtual world on foot or in a vehicle that rests on or hovers above the
ground. It is strongly recommended that WALK navigation define the up vector in the +Y direction and provide
some form of terrain following and gravity in order to produce a walking or driving experience. If the bound
NavigationInfo's type is "WALK", the browser shall strictly support collision detection (see 6.8, Collision).

FLY navigation is similar to WALK except that terrain following and gravity may be disabled or ignored. There
shall still be some notion of "up" however. If the bound NavigationInfo's type is "FLY", the browser shall strictly
support collision detection (see 6.8, Collision).

EXAMINE navigation is used for viewing individual objects and often includes (but does not require) the ability to
spin around the object and move the viewer closer or further away.

NONE navigation disables and removes all browser-specific navigation user interface forcing the user to navigate
using only mechanisms provided in the scene, such as Anchor nodes or scripts that include loadURL().

If the NavigationInfo type is "WALK", "FLY", "EXAMINE", or "NONE" or a combination of these types (i.e.,
"ANY" is not in the list), Viewpoint transitions (see 6.53, Viewpoint) triggered by the Anchor node (see
6.2, Anchor) or the loadURL()scripting method (see 4.12.10, Browser script interface) shall be implemented as a
jump cut from the old Viewpoint to the new Viewpoint with transition effects that shall not trigger events besides
the exit and enter events caused by the jump.

Browsers may create browser-specific navigation type extensions. It is recommended that extended type names
include a unique suffix (e.g., HELICOPTER_mydomain.com) to prevent conflicts. Viewpoint transitions (see
6.53, Viewpoint) triggered by the Anchor node (see 6.2, Anchor) or the loadURL()scripting method (see
4.12.10, Browser script interface) are undefined for extended navigation types. If none of the types are recognized
by the browser, the default "ANY" is used. These strings values are case sensitive ("any" is not equal to "ANY").

The speed field specifies the rate at which the viewer travels through a scene in metres per second. Since browsers
may provide mechanisms to travel faster or slower, this field specifies the default, average speed of the viewer when
the NavigationInfo node is bound. If the NavigationInfo type is EXAMINE, speed shall not affect the viewer's

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

105

rotational speed. Scaling in the transformation hierarchy of the currently bound Viewpoint node (see above) scales
the speed; parent translation and rotation transformations have no effect on speed. Speed shall be non-negative. Zero
speed indicates that the avatar's position is stationary, but its orientation and field of view may still change. If the
navigation type is "NONE", the speed field has no effect.

The avatarSize field specifies the user's physical dimensions in the world for the purpose of collision detection and
terrain following. It is a multi-value field allowing several dimensions to be specified. The first value shall be the
allowable distance between the user's position and any collision geometry (as specified by a Collision node) before
a collision is detected. The second shall be the height above the terrain at which the browser shall maintain the
viewer. The third shall be the height of the tallest object over which the viewer can move. This allows staircases to
be built with dimensions that can be ascended by viewers in all browsers. The transformation hierarchy of the
currently bound Viewpoint node scales the avatarSize. Translations and rotations have no effect on avatarSize.

For purposes of terrain following, the browser maintains a notion of the down direction (down vector), since gravity
is applied in the direction of the down vector. This down vector shall be along the negative Y-axis in the local
coordinate system of the currently bound Viewpoint node (i.e., the accumulation of the Viewpoint node's ancestors'
transformations, not including the Viewpoint node's orientation field).

Geometry beyond the visibilityLimit may not be rendered. A value of 0.0 indicates an infinite visibility limit. The
visibilityLimit field is restricted to be greater than or equal to zero.

The speed, avatarSize and visibilityLimit values are all scaled by the transformation being applied to the currently
bound Viewpoint node. If there is no currently bound Viewpoint node, the values are interpreted in the world
coordinate system. This allows these values to be automatically adjusted when binding to a Viewpoint node that has
a scaling transformation applied to it without requiring a new NavigationInfo node to be bound as well. The results
are undefined if the scale applied to the Viewpoint node is non-uniform.

The headlight field specifies whether a browser shall turn on a headlight. A headlight is a directional light that
always points in the direction the user is looking. Setting this field to TRUE allows the browser to provide a
headlight, possibly with user interface controls to turn it on and off. Scenes that enlist precomputed lighting
(e.g., radiosity solutions) can turn the headlight off. The headlight shall have intensity = 1, color = (1 1 1),
ambientIntensity = 0.0, and direction = (0 0 -1).

It is recommended that the near clipping plane be set to one-half of the collision radius as specified in the avatarSize
field (setting the near plane to this value prevents excessive clipping of objects just above the collision volume, and
also provides a region inside the collision volume for content authors to include geometry intended to remain fixed
relative to the viewer). Such geometry shall not be occluded by geometry outside of the collision volume.

6.30 Normal

Normal {
 exposedField MFVec3f vector [] # (-∞,∞)
}

This node defines a set of 3D surface normal vectors to be used in the vector field of some geometry nodes
(e.g., IndexedFaceSet and ElevationGrid). This node contains one multiple-valued field that contains the normal
vectors. Normals shall be of unit length.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

106

6.31 NormalInterpolator

NormalInterpolator {

 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFVec3f keyValue [] # (-∞,∞)
 eventOut MFVec3f value_changed
}

The NormalInterpolator node interpolates among a list of normal vector sets specified by the keyValue field. The
output vector, value_changed, shall be a set of normalized vectors.

Values in the keyValue field shall be of unit length. The number of normals in the keyValue field shall be an integer
multiple of the number of keyframes in the key field. That integer multiple defines how many normals will be
contained in the value_changed events.

Normal interpolation shall be performed on the surface of the unit sphere. That is, the output values for a linear
interpolation from a point P on the unit sphere to a point Q also on the unit sphere shall lie along the shortest arc (on
the unit sphere) connecting points P and Q. Also, equally spaced input fractions shall result in arcs of equal length.
The results are undefined if P and Q are diagonally opposite.

A more detailed discussion of interpolators is provided in 4.6.8, Interpolator nodes.

6.32 OrientationInterpolator

OrientationInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFRotation keyValue [] # [-1,1], (-∞,∞)
 eventOut SFRotation value_changed
}

The OrientationInterpolator node interpolates among a list of rotation values specified in the keyValue field. These
rotations are absolute in object space and therefore are not cumulative. The keyValue field shall contain exactly as
many rotations as there are keyframes in the key field.

An orientation represents the final position of an object after a rotation has been applied. An OrientationInterpolator
interpolates between two orientations by computing the shortest path on the unit sphere between the two
orientations. The interpolation is linear in arc length along this path. The results are undefined if the two orientations
are diagonally opposite.

If two consecutive keyValue values exist such that the arc length between them is greater than π, the interpolation
will take place on the arc complement. For example, the interpolation between the orientations (0, 1, 0, 0) and (0, 1,
0, 5.0) is equivalent to the rotation between the orientations (0, 1, 0, 2π) and (0, 1, 0, 5.0).

A more detailed discussion of interpolators is contained in 4.6.8, Interpolator nodes.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

107

6.33 PixelTexture

PixelTexture {
 exposedField SFImage image 0 0 0 # see 5.5, SFImage
 field SFBool repeatS TRUE
 field SFBool repeatT TRUE
}

The PixelTexture node defines a 2D image-based texture map as an explicit array of pixel values (image field) and
parameters controlling tiling repetition of the texture onto geometry.

Texture maps are defined in a 2D coordinate system (s, t) that ranges from 0.0 to 1.0 in both directions. The bottom
edge of the pixel image corresponds to the S-axis of the texture map, and left edge of the pixel image corresponds to
the T-axis of the texture map. The lower-left pixel of the pixel image corresponds to s=0.0, t=0.0, and the top-right
pixel of the image corresponds to s = 1.0, t = 1.0.

See 4.6.11, Texture maps, for a general description of texture maps. Figure 6.13 depicts an example PixelTexture.

Figure 6.13 -- PixelTexture node

See 4.14 ,Lighting model, for a description of how the texture values interact with the appearance of the geometry.
5.5, SFImage, describes the specification of an image.

The repeatS and repeatT fields specify how the texture wraps in the S and T directions. If repeatS is TRUE (the
default), the texture map is repeated outside the 0-to-1 texture coordinate range in the S direction so that it fills the
shape. If repeatS is FALSE, the texture coordinates are clamped in the S direction to lie within the 0.0 to 1.0 range.
The repeatT field is analogous to the repeatS field.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

108

6.34 PlaneSensor

PlaneSensor {
 exposedField SFBool autoOffset TRUE
 exposedField SFBool enabled TRUE
 exposedField SFVec2f maxPosition -1 -1 # (-∞,∞)
 exposedField SFVec2f minPosition 0 0 # (-∞,∞)
 exposedField SFVec3f offset 0 0 0 # (-∞,∞)
 eventOut SFBool isActive
 eventOut SFVec3f trackPoint_changed
 eventOut SFVec3f translation_changed
}

The PlaneSensor node maps pointing device motion into two-dimensional translation in a plane parallel to the Z=0
plane of the local coordinate system. The PlaneSensor node uses the descendent geometry of its parent node to
determine whether it is liable to generate events.

The enabled exposedField enables and disables the PlaneSensor. If enabled is TRUE, the sensor reacts appropriately
to user events. If enabled is FALSE, the sensor does not track user input or send events. If enabled receives a
FALSE event and isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive FALSE
event. If enabled receives a TRUE event, the sensor is enabled and made ready for user activation.

The PlaneSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for
details on using the pointing device to activate the PlaneSensor.

Upon activation of the pointing device (e.g., mouse button down) while indicating the sensor's geometry, an isActive
TRUE event is sent. Pointer motion is mapped into relative translation in the tracking plane, (a plane parallel to the
sensor's local Z=0 plane and coincident with the initial point of intersection). For each subsequent movement of the
bearing, a translation_changed event is output which corresponds to the sum of the relative translation from the
original intersection point to the intersection point of the new bearing in the plane plus the offset value. The sign of
the translation is defined by the Z=0 plane of the sensor's coordinate system. trackPoint_changed events reflect the
unclamped drag position on the surface of this plane. When the pointing device is deactivated and autoOffset is
TRUE, offset is set to the last translation_changed value and an offset_changed event is generated. More details are
provided in 4.6.7.4, Drag sensors.

When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until
it is deactivated and generates an isActive FALSE event. Other pointing-device sensors shall not generate events
during this time. Motion of the pointing device while isActive is TRUE is referred to as a "drag." If a 2D pointing
device is in use, isActive events typically reflect the state of the primary button associated with the device
(i.e., isActive is TRUE when the primary button is pressed, and is FALSE when it is released). If a 3D pointing
device (e.g., wand) is in use, isActive events typically reflect whether the pointer is within or in contact with the
sensor's geometry.

minPosition and maxPosition may be set to clamp translation_changed events to a range of values as measured from
the origin of the Z=0 plane. If the X or Y component of minPosition is greater than the corresponding component of
maxPosition, translation_changed events are not clamped in that dimension. If the X or Y component of
minPosition is equal to the corresponding component of maxPosition, that component is constrained to the given
value. This technique provides a way to implement a line sensor that maps dragging motion into a translation in one
dimension.

While the pointing device is activated and moved, trackPoint_changed and translation_changed events are sent.
trackPoint_changed events represent the unclamped intersection points on the surface of the tracking plane. If the

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

109

pointing device is dragged off of the tracking plane while activated (e.g., above horizon line), browsers may
interpret this in a variety ways (e.g., clamp all values to the horizon). Each movement of the pointing device, while
isActive is TRUE, generates trackPoint_changed and translation_changed events.

Further information about this behaviour can be found in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.35 PointLight

PointLight {
 exposedField SFFloat ambientIntensity 0 # [0,1]
 exposedField SFVec3f attenuation 1 0 0 # [0,∞)
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFVec3f location 0 0 0 # (-∞,∞)
 exposedField SFBool on TRUE
 exposedField SFFloat radius 100 # [0,∞)
}

The PointLight node specifies a point light source at a 3D location in the local coordinate system. A point light
source emits light equally in all directions; that is, it is omnidirectional. PointLight nodes are specified in the local
coordinate system and are affected by ancestor transformations.

Subclause 4.6.6, Light sources, contains a detailed description of the ambientIntensity, color, and intensity fields.

A PointLight node illuminates geometry within radius metres of its location. Both radius and location are affected
by ancestors' transformations (scales affect radius and transformations affect location). The radius field shall be
greater than or equal to zero.

PointLight node's illumination falls off with distance as specified by three attenuation coefficients. The attenuation
factor is 1/max(attenuation[0] + attenuation[1] × r + attenuation[2] × r2, 1), where r is the distance from the light
to the surface being illuminated. The default is no attenuation. An attenuation value of (0, 0, 0) is identical to (1, 0,
0). Attenuation values shall be greater than or equal to zero. A detailed description of VRML's lighting equations is
contained in 4.14, Lighting model.

6.36 PointSet

PointSet {
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
}

The PointSet node specifies a set of 3D points, in the local coordinate system, with associated colours at each point.
The coord field specifies a Coordinate node (or instance of a Coordinate node). The results are undefined if the
coord field specifies any other type of node. PointSet uses the coordinates in order. If the coord field is NULL, the
point set is considered empty.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

110

PointSet nodes are not lit, not texture-mapped, nor do they participate in collision detection. The size of each point is
implementation-dependent.

If the color field is not NULL, it shall specify a Color node that contains at least the number of points contained in
the coord node. The results are undefined if the color field specifies any other type of node. Colours shall be applied
to each point in order. The results are undefined if the number of values in the Color node is less than the number of
values specified in the Coordinate node.

If the color field is NULL and there is a Material node defined for the Appearance node affecting this PointSet node,
the emissiveColor of the Material node shall be used to draw the points. More details on lighting equations can be
found in 4.14, Lighting model.

6.37 PositionInterpolator

PositionInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFVec3f keyValue [] # (-∞,∞)
 eventOut SFVec3f value_changed
}

The PositionInterpolator node linearly interpolates among a list of 3D vectors. The keyValue field shall contain
exactly as many values as in the key field.

4.6.8, Interpolator nodes, contains a more detailed discussion of interpolators.

6.38 ProximitySensor

ProximitySensor {
 exposedField SFVec3f center 0 0 0 # (-∞,∞)
 exposedField SFVec3f size 0 0 0 # [0,∞)
 exposedField SFBool enabled TRUE
 eventOut SFBool isActive
 eventOut SFVec3f position_changed
 eventOut SFRotation orientation_changed
 eventOut SFTime enterTime
 eventOut SFTime exitTime
}

The ProximitySensor node generates events when the viewer enters, exits, and moves within a region in space
(defined by a box). A proximity sensor is enabled or disabled by sending it an enabled event with a value of TRUE
or FALSE. A disabled sensor does not send events.

A ProximitySensor node generates isActive TRUE/FALSE events as the viewer enters and exits the rectangular box
defined by its center and size fields. Browsers shall interpolate viewer positions and timestamp the isActive events
with the exact time the viewer first intersected the proximity region. The center field defines the centre point of the
proximity region in object space. The size field specifies a vector which defines the width (x), height (y), and depth

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

111

(z) of the box bounding the region. The components of the size field shall be greater than or equal to zero.
ProximitySensor nodes are affected by the hierarchical transformations of their parents.

The enterTime event is generated whenever the isActive TRUE event is generated (user enters the box), and exitTime
events are generated whenever an isActive FALSE event is generated (user exits the box).

The position_changed and orientation_changed eventOuts send events whenever the user is contained within the
proximity region and the position and orientation of the viewer changes with respect to the ProximitySensor node's
coordinate system including enter and exit times. The viewer movement may be a result of a variety of
circumstances resulting from browser navigation, ProximitySensor node's coordinate system changes, or bound
Viewpoint node's position or orientation changes.

Each ProximitySensor node behaves independently of all other ProximitySensor nodes. Every enabled
ProximitySensor node that is affected by the viewer's movement receives and sends events, possibly resulting in
multiple ProximitySensor nodes receiving and sending events simultaneously. Unlike TouchSensor nodes, there is
no notion of a ProximitySensor node lower in the scene graph "grabbing" events.

Instanced (DEF/USE) ProximitySensor nodes use the union of all the boxes to check for enter and exit. A multiply
instanced ProximitySensor node will detect enter and exit for all instances of the box and send enter/exit events
appropriately. However, the results are undefined if the any of the boxes of a multiply instanced ProximitySensor
node overlap.

A ProximitySensor node that surrounds the entire world has an enterTime equal to the time that the world was
entered and can be used to start up animations or behaviours as soon as a world is loaded. A ProximitySensor node
with a box containing zero volume (i.e., any size field element of 0.0) cannot generate events. This is equivalent to
setting the enabled field to FALSE.

A ProximitySensor read from a VRML file shall generate isActive TRUE, position_changed, orientation_changed
and enterTime events if the sensor is enabled and the viewer is inside the proximity region. A ProximitySensor
inserted into the transformation hierarchy shall generate isActive TRUE, position_changed, orientation_changed and
enterTime events if the sensor is enabled and the viewer is inside the proximity region. A ProximitySensor removed
from the transformation hierarchy shall generate isActive FALSE, position_changed, orientation_changed and
exitTime events if the sensor is enabled and the viewer is inside the proximity region.

6.39 ScalarInterpolator

ScalarInterpolator {
 eventIn SFFloat set_fraction # (-∞,∞)
 exposedField MFFloat key [] # (-∞,∞)
 exposedField MFFloat keyValue [] # (-∞,∞)
 eventOut SFFloat value_changed
}

This node linearly interpolates among a list of SFFloat values. This interpolator is appropriate for any parameter
defined using a single floating point value. Examples include width, radius, and intensity fields. The keyValue field
shall contain exactly as many numbers as there are keyframes in the key field.

A more detailed discussion of interpolators is available in 4.6.8, Interpolator nodes.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

112

6.40 Script

Script {
 exposedField MFString url []
 field SFBool directOutput FALSE
 field SFBool mustEvaluate FALSE
 # And any number of:
 eventIn eventType eventName
 field fieldType fieldName initialValue
 eventOut eventType eventName
}

The Script node is used to program behaviour in a scene. Script nodes typically

a. signify a change or user action;

b. receive events from other nodes;

c. contain a program module that performs some computation;

d. effect change somewhere else in the scene by sending events.

Each Script node has associated programming language code, referenced by the url field, that is executed to carry
out the Script node's function. That code is referred to as the "script" in the rest of this description. Details on the url
field can be found in 4.5, VRML and the World Wide Web.

Browsers are not required to support any specific language. Detailed information on scripting languages is described
in 4.12, Scripting. Browsers supporting a scripting language for which a language binding is specified shall adhere
to that language binding.

Sometime before a script receives the first event it shall be initialized (any language-dependent or user-defined
initialize() is performed). The script is able to receive and process events that are sent to it. Each event that
can be received shall be declared in the Script node using the same syntax as is used in a prototype definition:

eventIn type name

The type can be any of the standard VRML fields (as defined in 5, Field and event reference). Name shall be an
identifier that is unique for this Script node.

The Script node is able to generate events in response to the incoming events. Each event that may be generated
shall be declared in the Script node using the following syntax:

eventOut type name

With the exception of the url field, exposedFields are not allowed in Script nodes.

If the Script node's mustEvaluate field is FALSE, the browser may delay sending input events to the script until its
outputs are needed by the browser. If the mustEvaluate field is TRUE, the browser shall send input events to the
script as soon as possible, regardless of whether the outputs are needed. The mustEvaluate field shall be set to TRUE
only if the Script node has effects that are not known to the browser (such as sending information across the
network). Otherwise, poor performance may result.

Once the script has access to a VRML node (via an SFNode or MFNode value either in one of the Script node's
fields or passed in as an eventIn), the script is able to read the contents of that node's exposed fields. If the Script
node's directOutput field is TRUE, the script may also send events directly to any node to which it has access, and

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

113

may dynamically establish or break routes. If directOutput is FALSE (the default), the script may only affect the rest
of the world via events sent through its eventOuts. The results are undefined if directOutput is FALSE and the script
sends events directly to a node to which it has access.

A script is able to communicate directly with the VRML browser to get information such as the current time and the
current world URL. This is strictly defined by the API for the specific scripting language being used.

The location of the Script node in the scene graph has no affect on its operation. For example, if a parent of a Script
node is a Switch node with whichChoice set to "-1" (i.e., ignore its children), the Script node continues to operate as
specified (i.e., it receives and sends events).

6.41 Shape
Shape {

 exposedField SFNode appearance NULL
 exposedField SFNode geometry NULL
}

The Shape node has two fields, appearance and geometry, which are used to create rendered objects in the world.
The appearance field contains an Appearance node that specifies the visual attributes (e.g., material and texture) to
be applied to the geometry. The geometry field contains a geometry node. The specified geometry node is rendered
with the specified appearance nodes applied. See 4.6.3, Shapes and geometry, and 6.3, Appearance, for more
information.

4.14, Lighting model, contains details of the VRML lighting model and the interaction between Appearance nodes
and geometry nodes.

If the geometry field is NULL, the object is not drawn.

6.42 Sound

Sound {
 exposedField SFVec3f direction 0 0 1 # (-∞,∞)
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFVec3f location 0 0 0 # (-∞,∞)
 exposedField SFFloat maxBack 10 # [0,∞)
 exposedField SFFloat maxFront 10 # [0,∞)
 exposedField SFFloat minBack 1 # [0,∞)
 exposedField SFFloat minFront 1 # [0,∞)
 exposedField SFFloat priority 0 # [0,1]
 exposedField SFNode source NULL
 field SFBool spatialize TRUE
}

The Sound node specifies the spatial presentation of a sound in a VRML scene. The sound is located at a point in the
local coordinate system and emits sound in an elliptical pattern (defined by two ellipsoids). The ellipsoids are
oriented in a direction specified by the direction field. The shape of the ellipsoids may be modified to provide more
or less directional focus from the location of the sound.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

114

The source field specifies the sound source for the Sound node. If the source field is not specified, the Sound node
will not emit audio. The source field shall specify either an AudioClip node or a MovieTexture node. If a
MovieTexture node is specified as the sound source, the MovieTexture shall refer to a movie format that supports
sound (e.g., MPEG1-Systems, see 2.[MPEG]).

The intensity field adjusts the loudness (decibels) of the sound emitted by the Sound node (note: this is different
from the traditional definition of intensity with respect to sound; see E.[SNDA]). The intensity field has a value that
ranges from 0.0 to 1.0 and specifies a factor which shall be used to scale the normalized sample data of the sound
source during playback. A Sound node with an intensity of 1.0 shall emit audio at its maximum loudness (before
attenuation), and a Sound node with an intensity of 0.0 shall emit no audio. Between these values, the loudness
should increase linearly from a -20 dB change approaching an intensity of 0.0 to a 0 dB change at an intensity of 1.0.

The priority field provides a hint for the browser to choose which sounds to play when there are more active Sound
nodes than can be played at once due to either limited system resources or system load. 7.3.4, Sound priority,
attenuation, and spatialization, describes a recommended algorithm for determining which sounds to play under such
circumstances. The priority field ranges from 0.0 to 1.0, with 1.0 being the highest priority and 0.0 the lowest
priority.

The location field determines the location of the sound emitter in the local coordinate system. A Sound node's
output is audible only if it is part of the traversed scene. Sound nodes that are descended from LOD, Switch, or any
grouping or prototype node that disables traversal (i.e., drawing) of its children are not audible unless they are
traversed. If a Sound node is disabled by a Switch or LOD node, and later it becomes part of the traversal again, the
sound shall resume where it would have been had it been playing continuously.

The Sound node has an inner ellipsoid that defines a volume of space in which the maximum level of the sound is
audible. Within this ellipsoid, the normalized sample data is scaled by the intensity field and there is no attenuation.
The inner ellipsoid is defined by extending the direction vector through the location. The minBack and minFront
fields specify distances behind and in front of the location along the direction vector respectively. The inner
ellipsoid has one of its foci at location (the second focus is implicit) and intersects the direction vector at minBack
and minFront.

The Sound node has an outer ellipsoid that defines a volume of space that bounds the audibility of the sound. No
sound can be heard outside of this outer ellipsoid. The outer ellipsoid is defined by extending the direction vector
through the location. The maxBack and maxFront fields specify distances behind and in front of the location along
the direction vector respectively. The outer ellipsoid has one of its foci at location (the second focus is implicit) and
intersects the direction vector at maxBack and maxFront.

The minFront, maxFront, minBack, and maxBack fields are defined in local coordinates, and shall be greater than or
equal to zero. The minBack field shall be less than or equal to maxBack, and minFront shall be less than or equal
to maxFront. The ellipsoid parameters are specified in the local coordinate system but the ellipsoids' geometry is
affected by ancestors' transformations.

Between the two ellipsoids, there shall be a linear attenuation ramp in loudness, from 0 dB at the minimum ellipsoid
to -20 dB at the maximum ellipsoid:

attenuation = -20 × (d’ / d")

where d' is the distance along the location-to-viewer vector, measured from the transformed minimum ellipsoid
boundary to the viewer, and d" is the distance along the location-to-viewer vector from the transformed minimum
ellipsoid boundary to the transformed maximum ellipsoid boundary (see Figure 6.14).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

115

Figure 6.14 -- Sound node geometry

The spatialize field specifies if the sound is perceived as being directionally located relative to the viewer. If the
spatialize field is TRUE and the viewer is located between the transformed inner and outer ellipsoids, the viewer's
direction and the relative location of the Sound node should be taken into account during playback. Details outlining
the minimum required spatialization functionality can be found in 7.3.4, Sound priority, attenuation, and
spatialization. If the spatialize field is FALSE, then directional effects are ignored, but the ellipsoid dimensions and
intensity will still affect the loudness of the sound. If the sound source is multi-channel (e.g., stereo), then the source
should retain its channel separation during playback.

6.43 Sphere

Sphere {
 field SFFloat radius 1 # (0,∞)
}

The Sphere node specifies a sphere centred at (0, 0, 0) in the local coordinate system. The radius field specifies the
radius of the sphere and shall be greater than zero. Figure 6.15 depicts the fields of the Sphere node.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

116

Figure 6.15 -- Sphere node

When a texture is applied to a sphere, the texture covers the entire surface, wrapping counterclockwise from the
back of the sphere (i.e., longitudinal arc intersecting the -Z-axis) when viewed from the top of the sphere. The
texture has a seam at the back where the X=0 plane intersects the sphere and Z values are negative.
TextureTransform affects the texture coordinates of the Sphere.

The Sphere node's geometry requires outside faces only. When viewed from the inside the results are undefined.

6.44 SphereSensor

SphereSensor {
 exposedField SFBool autoOffset TRUE
 exposedField SFBool enabled TRUE
 exposedField SFRotation offset 0 1 0 0 # [-1,1], (-∞,∞)
 eventOut SFBool isActive
 eventOut SFRotation rotation_changed
 eventOut SFVec3f trackPoint_changed
}

The SphereSensor node maps pointing device motion into spherical rotation about the origin of the local coordinate
system. The SphereSensor node uses the descendent geometry of its parent node to determine whether it is liable to
generate events.

The enabled exposed field enables and disables the SphereSensor node. If enabled is TRUE, the sensor reacts
appropriately to user events. If enabled is FALSE, the sensor does not track user input or send events. If enabled
receives a FALSE event and isActive is TRUE, the sensor becomes disabled and deactivated, and outputs an isActive
FALSE event. If enabled receives a TRUE event the sensor is enabled and ready for user activation.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

117

The SphereSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for
details on using the pointing device to activate the SphereSensor.

Upon activation of the pointing device (e.g., mouse button down) over the sensor's geometry, an isActive TRUE
event is sent. The vector defined by the initial point of intersection on the SphereSensor's geometry and the local
origin determines the radius of the sphere that is used to map subsequent pointing device motion while dragging.
The virtual sphere defined by this radius and the local origin at the time of activation is used to interpret subsequent
pointing device motion and is not affected by any changes to the sensor's coordinate system while the sensor is
active. For each position of the bearing, a rotation_changed event is sent which corresponds to the sum of the
relative rotation from the original intersection point plus the offset value. trackPoint_changed events reflect the
unclamped drag position on the surface of this sphere. When the pointing device is deactivated and autoOffset is
TRUE, offset is set to the last rotation_changed value and an offset_changed event is generated. See 4.6.7.4, Drag
sensors, for more details.

When the sensor generates an isActive TRUE event, it grabs all further motion events from the pointing device until
it is released and generates an isActive FALSE event (other pointing-device sensors shall not generate events during
this time). Motion of the pointing device while isActive is TRUE is termed a "drag". If a 2D pointing device is in
use, isActive events will typically reflect the state of the primary button associated with the device (i.e., isActive is
TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device (e.g., wand) is in
use, isActive events will typically reflect whether the pointer is within (or in contact with) the sensor's geometry.

While the pointing device is activated, trackPoint_changed and rotation_changed events are output.
trackPoint_changed events represent the unclamped intersection points on the surface of the invisible sphere. If the
pointing device is dragged off the sphere while activated, browsers may interpret this in a variety of ways (e.g.,
clamp all values to the sphere or continue to rotate as the point is dragged away from the sphere). Each movement of
the pointing device while isActive is TRUE generates trackPoint_changed and rotation_changed events.

Further information about this behaviour can be found in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.45 SpotLight

SpotLight {
 exposedField SFFloat ambientIntensity 0 # [0,1]
 exposedField SFVec3f attenuation 1 0 0 # [0,∞)
 exposedField SFFloat beamWidth 1.570796 # (0,π/2]
 exposedField SFColor color 1 1 1 # [0,1]
 exposedField SFFloat cutOffAngle 0.785398 # (0,π/2]
 exposedField SFVec3f direction 0 0 -1 # (-∞,∞)
 exposedField SFFloat intensity 1 # [0,1]
 exposedField SFVec3f location 0 0 0 # (-∞,∞)
 exposedField SFBool on TRUE
 exposedField SFFloat radius 100 # [0,∞)
}

The SpotLight node defines a light source that emits light from a specific point along a specific direction vector and
constrained within a solid angle. Spotlights may illuminate geometry nodes that respond to light sources and
intersect the solid angle defined by the SpotLight. Spotlight nodes are specified in the local coordinate system and
are affected by ancestors' transformations.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

118

A detailed description of ambientIntensity, color, intensity, and VRML's lighting equations is provided in 4.6.6,
Light sources. More information on lighting concepts can be found in 4.14, Lighting model, including a detailed
description of the VRML lighting equations.

The location field specifies a translation offset of the centre point of the light source from the light's local coordinate
system origin. This point is the apex of the solid angle which bounds light emission from the given light source. The
direction field specifies the direction vector of the light's central axis defined in the local coordinate system.

The on field specifies whether the light source emits light. If on is TRUE, the light source is emitting light and may
illuminate geometry in the scene. If on is FALSE, the light source does not emit light and does not illuminate any
geometry.

The radius field specifies the radial extent of the solid angle and the maximum distance from location that may be
illuminated by the light source. The light source does not emit light outside this radius. The radius shall be greater
than or equal to zero.

Both radius and location are affected by ancestors' transformations (scales affect radius and transformations affect
location).

The cutOffAngle field specifies the outer bound of the solid angle. The light source does not emit light outside of this
solid angle. The beamWidth field specifies an inner solid angle in which the light source emits light at uniform full
intensity. The light source's emission intensity drops off from the inner solid angle (beamWidth) to the outer solid
angle (cutOffAngle) as described in the following equations:

 angle = the angle between the Spotlight’s direction vector
 and the vector from the Spotlight location to the point
 to be illuminated

 if (angle >= cutOffAngle):
 multiplier = 0
 else if (angle <= beamWidth):
 multiplier = 1
 else:
 multiplier = (angle - cutOffAngle) / (beamWidth - cutOffAngle)

 intensity(angle) = SpotLight.intensity × multiplier

If the beamWidth is greater than the cutOffAngle, beamWidth is defined to be equal to the cutOffAngle and the light
source emits full intensity within the entire solid angle defined by cutOffAngle. Both beamWidth and cutOffAngle
shall be greater than 0.0 and less than or equal to π/2. Figure 6.16 depicts the beamWidth, cutOffAngle, direction,
location, and radius fields of the SpotLight node.

SpotLight illumination falls off with distance as specified by three attenuation coefficients. The attenuation factor is
1/max(attenuation[0] + attenuation[1] × r + attenuation[2] × r2 , 1), where r is the distance from the light to the
surface being illuminated. The default is no attenuation. An attenuation value of (0, 0, 0) is identical to (1, 0, 0).
Attenuation values shall be greater than or equal to zero. A detailed description of VRML's lighting equations is
contained in 4.14, Lighting model.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

119

Figure 6.16 -- SpotLight node

6.46 Switch

Switch {
 exposedField MFNode choice []
 exposedField SFInt32 whichChoice -1 # [-1,∞)
}

The Switch grouping node traverses zero or one of the nodes specified in the choice field.

4.6.5, Grouping and children nodes, describes details on the types of nodes that are legal values for choice.

The whichChoice field specifies the index of the child to traverse, with the first child having index 0. If whichChoice
is less than zero or greater than the number of nodes in the choice field, nothing is chosen.

All nodes under a Switch continue to receive and send events regardless of the value of whichChoice. For example,
if an active TimeSensor is contained within an inactive choice of an Switch, the TimeSensor sends events regardless
of the Switch's state.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

120

6.47 Text

Text {
 exposedField MFString string []
 exposedField SFNode fontStyle NULL
 exposedField MFFloat length [] # [0,∞)
 exposedField SFFloat maxExtent 0.0 # [0,∞)
}

6.47.1 Introduction

The Text node specifies a two-sided, flat text string object positioned in the Z=0 plane of the local coordinate system
based on values defined in the fontStyle field (see 6.20, FontStyle). Text nodes may contain multiple text strings
specified using the UTF-8 encoding as specified by ISO 10646-1:1993 (see 2.[UTF8]). The text strings are stored in
the order in which the text mode characters are to be produced as defined by the parameters in the FontStyle node.

The text strings are contained in the string field. The fontStyle field contains one FontStyle node that specifies the
font size, font family and style, direction of the text strings, and any specific language rendering techniques used for
the text.

The maxExtent field limits and compresses all of the text strings if the length of the maximum string is longer than
the maximum extent, as measured in the local coordinate system. If the text string with the maximum length is
shorter than the maxExtent, then there is no compressing. The maximum extent is measured horizontally for
horizontal text (FontStyle node: horizontal=TRUE) and vertically for vertical text (FontStyle node:
horizontal=FALSE). The maxExtent field shall be greater than or equal to zero.

The length field contains an MFFloat value that specifies the length of each text string in the local coordinate
system. If the string is too short, it is stretched (either by scaling the text or by adding space between the characters).
If the string is too long, it is compressed (either by scaling the text or by subtracting space between the characters).
If a length value is missing (for example, if there are four strings but only three length values), the missing values
are considered to be 0. The length field shall be greater than or equal to zero.

Specifying a value of 0 for both the maxExtent and length fields indicates that the string may be any length.

6.47.2 ISO 10646-1:1993 Character Encodings

Characters in ISO 10646 (see 2.[UTF8]) are encoded in multiple octets. Code space is divided into four units, as
follows:

+-------------+-------------+-----------+------------+
| Group-octet | Plane-octet | Row-octet | Cell-octet |
+-------------+-------------+-----------+------------+

ISO 10646-1:1993 allows two basic forms for characters:

a. UCS-2 (Universal Coded Character Set-2). This form is also known as the Basic Multilingual Plane (BMP).
Characters are encoded in the lower two octets (row and cell).

b. UCS-4 (Universal Coded Character Set-4). Characters are encoded in the full four octets.

In addition, three transformation formats (UCS Transformation Format or UTF) are accepted: UTF-7, UTF-8, and
UTF-16. Each represents the nature of the transformation: 7-bit, 8-bit, or 16-bit. UTF-7 and UTF-16 are referenced
in 2.[UTF8].

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

121

UTF-8 maintains transparency for all ASCII code values (0...127). It allows ASCII text (0x0..0x7F) to appear
without any changes and encodes all characters from 0x80.. 0x7FFFFFFF into a series of six or fewer bytes.

If the most significant bit of the first character is 0, the remaining seven bits are interpreted as an ASCII character.
Otherwise, the number of leading 1 bits indicates the number of bytes following. There is always a zero bit between
the count bits and any data.

The first byte is one of the following. The X indicates bits available to encode the character:

 0XXXXXXX only one byte 0..0x7F (ASCII)
 110XXXXX two bytes Maximum character value is 0x7FF
 1110XXXX three bytes Maximum character value is 0xFFFF
 11110XXX four bytes Maximum character value is 0x1FFFFF
 111110XX five bytes Maximum character value is 0x3FFFFFF
 1111110X six bytes Maximum character value is 0x7FFFFFFF

All following bytes have the format 10XXXXXX.

As a two byte example, the symbol for a register trade mark is ® or 174 in ISO Latin-1 (see 2.[I8859]). It is
encoded as 0x00AE in UCS-2 of ISO 10646. In UTF-8, it has the following two byte encoding: 0xC2, 0xAE.

6.47.3 Appearance

Textures are applied to text as follows. The texture origin is at the origin of the first string, as determined by the
justification. The texture is scaled equally in both S and T dimensions, with the font height representing 1 unit. S
increases to the right, and T increases up.

4.14, Lighting model, has details on VRML lighting equations and how Appearance, Material and textures interact
with lighting.

The Text node does not participate in collision detection.

6.48 TextureCoordinate

TextureCoordinate {
 exposedField MFVec2f point [] # (-∞,∞)
}

The TextureCoordinate node specifies a set of 2D texture coordinates used by vertex-based geometry nodes
(e.g., IndexedFaceSet and ElevationGrid) to map textures to vertices. Textures are two dimensional colour functions
that, given an (s, t) coordinate, return a colour value colour(s, t). Texture map values (ImageTexture, MovieTexture,
and PixelTexture) range from [0.0, 1.0] along the S-axis and T-axis. However, TextureCoordinate values, specified
by the point field, may be in the range (-∞,∞). Texture coordinates identify a location (and thus a colour value) in
the texture map. The horizontal coordinate s is specified first, followed by the vertical coordinate t.

If the texture map is repeated in a given direction (S-axis or T-axis), a texture coordinate C (s or t) is mapped into a
texture map that has N pixels in the given direction as follows:

Texture map location = (C - floor(C)) × N

If the texture map is not repeated, the texture coordinates are clamped to the 0.0 to 1.0 range as follows:

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

122

 Texture map location = N, if C > 1.0,
 = 0.0, if C < 0.0,
 = C × N, if 0.0 <= C <= 1.0.

Details on repeating textures are specific to texture map node types described in 6.22, ImageTexture,
6.28, MovieTexture, and 6.33, PixelTexture.

6.49 TextureTransform

TextureTransform {
 exposedField SFVec2f center 0 0 # (-∞,∞)
 exposedField SFFloat rotation 0 # (-∞,∞)
 exposedField SFVec2f scale 1 1 # (-∞,∞)
 exposedField SFVec2f translation 0 0 # (-∞,∞)
}

The TextureTransform node defines a 2D transformation that is applied to texture coordinates (see
6.48, TextureCoordinate). This node affects the way textures coordinates are applied to the geometric surface. The
transformation consists of (in order):

a. a translation;

b. a rotation about the centre point;

c. a non-uniform scale about the centre point.

These parameters support changes to the size, orientation, and position of textures on shapes. Note that these
operations appear reversed when viewed on the surface of geometry. For example, a scale value of (2 2) will scale
the texture coordinates and have the net effect of shrinking the texture size by a factor of 2 (texture coordinates are
twice as large and thus cause the texture to repeat). A translation of (0.5 0.0) translates the texture coordinates +.5
units along the S-axis and has the net effect of translating the texture -0.5 along the S-axis on the geometry's surface.
A rotation of π/2 of the texture coordinates results in a -π/2 rotation of the texture on the geometry.

The center field specifies a translation offset in texture coordinate space about which the rotation and scale fields
are applied. The scale field specifies a scaling factor in S and T of the texture coordinates about the center point.
scale values shall be in the range (-∞,∞). The rotation field specifies a rotation in radians of the texture coordinates
about the center point after the scale has been applied. A positive rotation value makes the texture coordinates rotate
counterclockwise about the centre, thereby rotating the appearance of the texture itself clockwise. The translation
field specifies a translation of the texture coordinates.

In matrix transformation notation, where Tc is the untransformed texture coordinate, Tc’ is the transformed texture
coordinate, C (center), T (translation), R (rotation), and S (scale) are the intermediate transformation matrices,

Tc’ = -C × S × R × C × T × Tc

Note that this transformation order is the reverse of the Transform node transformation order since the texture
coordinates, not the texture, are being transformed (i.e., the texture coordinate system).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

123

6.50 TimeSensor

TimeSensor {
 exposedField SFTime cycleInterval 1 # (0,∞)
 exposedField SFBool enabled TRUE
 exposedField SFBool loop FALSE
 exposedField SFTime startTime 0 # (-∞,∞)
 exposedField SFTime stopTime 0 # (-∞,∞)
 eventOut SFTime cycleTime
 eventOut SFFloat fraction_changed # [0, 1]
 eventOut SFBool isActive
 eventOut SFTime time
}

TimeSensor nodes generate events as time passes. TimeSensor nodes can be used for many purposes including:

a. driving continuous simulations and animations;

b. controlling periodic activities (e.g., one per minute);

c. initiating single occurrence events such as an alarm clock.

The TimeSensor node contains two discrete eventOuts: isActive and cycleTime. The isActive eventOut sends TRUE
when the TimeSensor node begins running, and FALSE when it stops running. The cycleTime eventOut sends a time
event at startTime and at the beginning of each new cycle (useful for synchronization with other time-based objects).
The remaining eventOuts generate continuous events. The fraction_changed eventOut, an SFFloat in the closed
interval [0,1], sends the completed fraction of the current cycle. The time eventOut sends the absolute time for a
given simulation tick.

If the enabled exposedField is TRUE, the TimeSensor node is enabled and may be running. If a set_enabled FALSE
event is received while the TimeSensor node is running, the sensor performs the following actions:

d. evaluates and sends all relevant outputs;

e. sends a FALSE value for isActive;

f. disables itself.

Events on the exposedFields of the TimeSensor node (e.g., set_startTime) are processed and their corresponding
eventOuts (e.g., startTime_changed) are sent regardless of the state of the enabled field. The remaining discussion
assumes enabled is TRUE.

The loop, startTime, and stopTime exposedFields and the isActive eventOut and their effects on the TimeSensor
node are discussed in detail in 4.6.9, Time-dependent nodes. The "cycle" of a TimeSensor node lasts for
cycleInterval seconds. The value of cycleInterval shall be greater than zero.

A cycleTime eventOut can be used for synchronization purposes such as sound with animation. The value of a
cycleTime eventOut will be equal to the time at the beginning of the current cycle. A cycleTime eventOut is
generated at the beginning of every cycle, including the cycle starting at startTime. The first cycleTime eventOut for
a TimeSensor node can be used as an alarm (single pulse at a specified time).

When a TimeSensor node becomes active, it generates an isActive = TRUE event and begins generating time,
fraction_changed, and cycleTime events which may be routed to other nodes to drive animation or simulated
behaviours. The behaviour at read time is described below. The time event sends the absolute time for a given tick of

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

124

the TimeSensor node (time fields and events represent the number of seconds since midnight GMT January 1,
1970).

fraction_changed events output a floating point value in the closed interval [0, 1]. At startTime the value of
fraction_changed is 0. After startTime, the value of fraction_changed in any cycle will progress through the range
(0.0, 1.0]. At startTime + N × cycleInterval, for N = 1, 2, ..., that is, at the end of every cycle, the value of
fraction_changed is 1.

Let now represent the time at the current simulation tick. Then the time and fraction_changed eventOuts can then be
computed as:

 time = now
 temp = (now - startTime) / cycleInterval
 f = fractionalPart(temp)
 if (f == 0.0 && now > startTime) fraction_changed = 1.0
 else fraction_changed = f

where fractionalPart(x) is a function that returns the fractional part, (that is, the digits to the right of the
decimal point), of a nonnegative floating point number.

A TimeSensor node can be set up to be active at read time by specifying loop TRUE (not the default) and
stopTime less than or equal to startTime (satisfied by the default values). The time events output absolute times for
each tick of the TimeSensor node simulation. The time events shall start at the first simulation tick greater than or
equal to startTime. time events end at stopTime, or at startTime + N × cycleInterval for some positive integer value
of N, or loop forever depending on the values of the other fields. An active TimeSensor node shall stop at the first
simulation tick when now >= stopTime > startTime.

No guarantees are made with respect to how often a TimeSensor node generates time events, but a TimeSensor node
shall generate events at least at every simulation tick. TimeSensor nodes are guaranteed to generate final time and
fraction_changed events. If loop is FALSE at the end of the Nth cycleInterval and was TRUE at
startTime + M × cycleInterval for all 0 < M < N, the final time event will be generated with a value of
(startTime + N × cycleInterval) or stopTime (if stopTime > startTime), whichever value is less. If loop is TRUE at
the completion of every cycle, the final event is generated as evaluated at stopTime (if stopTime > startTime) or
never.

An active TimeSensor node ignores set_cycleInterval and set_startTime events. An active TimeSensor node also
ignores set_stopTime events for set_stopTime less than or equal to startTime. For example, if a set_startTime event
is received while a TimeSensor node is active, that set_startTime event is ignored (the startTime field is not
changed, and a startTime_changed eventOut is not generated). If an active TimeSensor node receives a set_stopTime
event that is less than the current time, and greater than startTime, it behaves as if the stopTime requested is the
current time and sends the final events based on the current time (note that stopTime is set as specified in the
eventIn).

A TimeSensor read from a VRML file shall generate isActive TRUE, time and fraction_changed events if the sensor
is enabled and all conditions for a TimeSensor to be active are met.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

125

6.51 TouchSensor

TouchSensor {
 exposedField SFBool enabled TRUE
 eventOut SFVec3f hitNormal_changed
 eventOut SFVec3f hitPoint_changed
 eventOut SFVec2f hitTexCoord_changed
 eventOut SFBool isActive
 eventOut SFBool isOver
 eventOut SFTime touchTime
}

A TouchSensor node tracks the location and state of the pointing device and detects when the user points at
geometry contained by the TouchSensor node's parent group. A TouchSensor node can be enabled or disabled by
sending it an enabled event with a value of TRUE or FALSE. If the TouchSensor node is disabled, it does not track
user input or send events.

The TouchSensor generates events when the pointing device points toward any geometry nodes that are descendants
of the TouchSensor's parent group. See 4.6.7.5, Activating and manipulating sensors, for more details on using the
pointing device to activate the TouchSensor.

The isOver eventOut reflects the state of the pointing device with regard to whether it is pointing towards the
TouchSensor node's geometry or not. When the pointing device changes state from a position such that its bearing
does not intersect any of the TouchSensor node's geometry to one in which it does intersect geometry, an isOver
TRUE event is generated. When the pointing device moves from a position such that its bearing intersects geometry
to one in which it no longer intersects the geometry, or some other geometry is obstructing the TouchSensor node's
geometry, an isOver FALSE event is generated. These events are generated only when the pointing device has
moved and changed `over' state. Events are not generated if the geometry itself is animating and moving underneath
the pointing device.

As the user moves the bearing over the TouchSensor node's geometry, the point of intersection (if any) between the
bearing and the geometry is determined. Each movement of the pointing device, while isOver is TRUE, generates
hitPoint_changed, hitNormal_changed and hitTexCoord_changed events. hitPoint_changed events contain the 3D
point on the surface of the underlying geometry, given in the TouchSensor node's coordinate system.
hitNormal_changed events contain the surface normal vector at the hitPoint. hitTexCoord_changed events contain
the texture coordinates of that surface at the hitPoint. The values of hitTexCoord_changed and hitNormal_changed
events are computed as appropriate for the associated shape.

If isOver is TRUE, the user may activate the pointing device to cause the TouchSensor node to generate isActive
events (e.g., by pressing the primary mouse button). When the TouchSensor node generates an isActive TRUE event,
it grabs all further motion events from the pointing device until it is released and generates an isActive FALSE event
(other pointing-device sensors will not generate events during this time). Motion of the pointing device while
isActive is TRUE is termed a "drag." If a 2D pointing device is in use, isActive events reflect the state of the primary
button associated with the device (i.e., isActive is TRUE when the primary button is pressed and FALSE when it is
released). If a 3D pointing device is in use, isActive events will typically reflect whether the pointing device is
within (or in contact with) the TouchSensor node's geometry.

The eventOut field touchTime is generated when all three of the following conditions are true:

a. The pointing device was pointing towards the geometry when it was initially activated (isActive is TRUE).

b. The pointing device is currently pointing towards the geometry (isOver is TRUE).

c. The pointing device is deactivated (isActive FALSE event is also generated).

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

126

More information about this behaviour is described in 4.6.7.3, Pointing-device sensors, 4.6.7.4, Drag sensors, and
4.6.7.5, Activating and manipulating sensors.

6.52 Transform

Transform {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField SFVec3f center 0 0 0 # (-∞,∞)
 exposedField MFNode children []
 exposedField SFRotation rotation 0 0 1 0 # [-1,1], (-∞,∞)
 exposedField SFVec3f scale 1 1 1 # (0,∞)
 exposedField SFRotation scaleOrientation 0 0 1 0 # [-1,1], (-∞,∞)
 exposedField SFVec3f translation 0 0 0 # (-∞,∞)
 field SFVec3f bboxCenter 0 0 0 # (-∞,∞)
 field SFVec3f bboxSize -1 -1 -1 # (0,∞) or -1,-1,-1
}

The Transform node is a grouping node that defines a coordinate system for its children that is relative to the
coordinate systems of its ancestors. See 4.4.4, Transformation hierarchy, and 4.4.5, Standard units and coordinate
system, for a description of coordinate systems and transformations.

4.6.5, Grouping and children nodes, provides a description of the children, addChildren, and removeChildren fields
and eventIns.

The bboxCenter and bboxSize fields specify a bounding box that encloses the children of the Transform node. This
is a hint that may be used for optimization purposes. The results are undefined if the specified bounding box is
smaller than the actual bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that
the bounding box is not specified and, if needed, shall be calculated by the browser. The bounding box shall be large
enough at all times to enclose the union of the group's children's bounding boxes; it shall not include any
transformations performed by the group itself (i.e., the bounding box is defined in the local coordinate system of the
children). The results are undefined if the specified bounding box is smaller than the true bounding box of the group.
A description of the bboxCenter and bboxSize fields is provided in 4.6.4, Bounding boxes.

The translation, rotation, scale, scaleOrientation and center fields define a geometric 3D transformation consisting
of (in order):

a. a (possibly) non-uniform scale about an arbitrary point;

b. a rotation about an arbitrary point and axis;

c. a translation.

The center field specifies a translation offset from the origin of the local coordinate system (0,0,0). The rotation
field specifies a rotation of the coordinate system. The scale field specifies a non-uniform scale of the coordinate
system. scale values shall be greater than zero. The scaleOrientation specifies a rotation of the coordinate system
before the scale (to specify scales in arbitrary orientations). The scaleOrientation applies only to the scale operation.
The translation field specifies a translation to the coordinate system.

Given a 3-dimensional point P and Transform node, P is transformed into point P’ in its parent's coordinate system
by a series of intermediate transformations. In matrix transformation notation, where C (center), SR
(scaleOrientation), T (translation), R (rotation), and S (scale) are the equivalent transformation matrices,

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

127

 P’ = T × C × R × SR × S × -SR × -C × P

The following Transform node:

Transform {
 center C
 rotation R
 scale S
 scaleOrientation SR
 translation T
 children [...]
}

is equivalent to the nested sequence of:

Transform {
 translation T
 children Transform {
 translation C
 children Transform {
 rotation R
 children Transform {
 rotation SR
 children Transform {
 scale S
 children Transform {
 rotation -SR
 children Transform {
 translation -C
 children [...]
}}}}}}}

6.53 Viewpoint

Viewpoint {
 eventIn SFBool set_bind
 exposedField SFFloat fieldOfView 0.785398 # (0,π)
 exposedField SFBool jump TRUE
 exposedField SFRotation orientation 0 0 1 0 # [-1,1], (-∞,∞)
 exposedField SFVec3f position 0 0 10 # (-∞,∞)
 field SFString description ""
 eventOut SFTime bindTime
 eventOut SFBool isBound
}

The Viewpoint node defines a specific location in the local coordinate system from which the user may view the
scene. Viewpoint nodes are bindable children nodes (see 4.6.10, Bindable children nodes) and thus there exists a
Viewpoint node stack in the browser in which the top-most Viewpoint node on the stack is the currently active
Viewpoint node. If a TRUE value is sent to the set_bind eventIn of a Viewpoint node, it is moved to the top of the
Viewpoint node stack and activated. When a Viewpoint node is at the top of the stack, the user's view is
conceptually re-parented as a child of the Viewpoint node. All subsequent changes to the Viewpoint node's
coordinate system change the user's view (e.g., changes to any ancestor transformation nodes or to the Viewpoint
node's position or orientation fields). Sending a set_bind FALSE event removes the Viewpoint node from the stack

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

128

and produces isBound FALSE and bindTime events. If the popped Viewpoint node is at the top of the viewpoint
stack, the user's view is re-parented to the next entry in the stack. More details on binding stacks can be found in
4.6.10, Bindable children nodes. When a Viewpoint node is moved to the top of the stack, the existing top of stack
Viewpoint node sends an isBound FALSE event and is pushed down the stack.

An author can automatically move the user's view through the world by binding the user to a Viewpoint node and
then animating either the Viewpoint node or the transformations above it. Browsers shall allow the user view to be
navigated relative to the coordinate system defined by the Viewpoint node (and the transformations above it) even if
the Viewpoint node or its ancestors' transformations are being animated.

The bindTime eventOut sends the time at which the Viewpoint node is bound or unbound. This can happen:

a. during loading;

b. when a set_bind event is sent to the Viewpoint node;

c. when the browser binds to the Viewpoint node through its user interface described below.

The position and orientation fields of the Viewpoint node specify relative locations in the local coordinate system.
Position is relative to the coordinate system's origin (0,0,0), while orientation specifies a rotation relative to the
default orientation. In the default position and orientation, the viewer is on the Z-axis looking down the -Z-axis
toward the origin with +X to the right and +Y straight up. Viewpoint nodes are affected by the transformation
hierarchy.

Navigation types (see 6.29, NavigationInfo) that require a definition of a down vector (e.g., terrain following) shall
use the negative Y-axis of the coordinate system of the currently bound Viewpoint node. Likewise, navigation types
that require a definition of an up vector shall use the positive Y-axis of the coordinate system of the currently bound
Viewpoint node. The orientation field of the Viewpoint node does not affect the definition of the down or up
vectors. This allows the author to separate the viewing direction from the gravity direction.

The jump field specifies whether the user's view "jumps" to the position and orientation of a bound Viewpoint node
or remains unchanged. This jump is instantaneous and discontinuous in that no collisions are performed and no
ProximitySensor nodes are checked in between the starting and ending jump points. If the user's position before the
jump is inside a ProximitySensor the exitTime of that sensor shall send the same timestamp as the bind eventIn.
Similarly, if the user's position after the jump is inside a ProximitySensor the enterTime of that sensor shall send the
same timestamp as the bind eventIn. Regardless of the value of jump at bind time, the relative viewing
transformation between the user's view and the current Viewpoint node shall be stored with the current Viewpoint
node for later use when un-jumping (i.e., popping the Viewpoint node binding stack from a Viewpoint node with
jump TRUE). The following summarizes the bind stack rules (see 4.6.10, Bindable children nodes) with additional
rules regarding Viewpoint nodes (displayed in boldface type):

d. During read, the first encountered Viewpoint node is bound by pushing it to the top of the Viewpoint node
stack. If a Viewpoint node name is specified in the URL that is being read, this named Viewpoint node is
considered to be the first encountered Viewpoint node. Nodes contained within Inline nodes, within the
strings passed to the Browser.createVrmlFromString() method, or within files passed to the
Browser.createVrmlFromURL() method (see 4.12.10, Browser script interface) are not candidates for the
first encountered Viewpoint node. The first node within a prototype instance is a valid candidate for the
first encountered Viewpoint node. The first encountered Viewpoint node sends an isBound TRUE event.

e. When a set_bind TRUE event is received by a Viewpoint node,

1. If it is not on the top of the stack: The relative transformation from the current top of stack
Viewpoint node to the user’s view is stored with the current top of stack Viewpoint node. The
current top of stack node sends an isBound FALSE event. The new node is moved to the top of the
stack and becomes the currently bound Viewpoint node. The new Viewpoint node (top of stack)
sends an isBound TRUE event. If jump is TRUE for the new Viewpoint node, the user’s view is

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

129

instantaneously "jumped" to match the values in the position and orientation fields of the
new Viewpoint node.

2. If the node is already at the top of the stack, this event has no affect.

f. When a set_bind FALSE event is received by a Viewpoint node in the stack, it is removed from the stack.
If it was on the top of the stack,

1. it sends an isBound FALSE event,

2. the next node in the stack becomes the currently bound Viewpoint node (i.e., pop) and issues an
isBound TRUE event,

3. if its jump field value is TRUE, the user’s view is instantaneously "jumped" to the position
and orientation of the next Viewpoint node in the stack with the stored relative
transformation of this next Viewpoint node applied.

g. If a set_bind FALSE event is received by a node not in the stack, the event is ignored and isBound events
are not sent.

h. When a node replaces another node at the top of the stack, the isBound TRUE and FALSE events from the
two nodes are sent simultaneously (i.e., with identical timestamps).

i. If a bound node is deleted, it behaves as if it received a set_bind FALSE event (see c.).

The jump field may change after a Viewpoint node is bound. The rules described above still apply. If jump was
TRUE when the Viewpoint node is bound, but changed to FALSE before the set_bind FALSE is sent, the Viewpoint
node does not un-jump during unbind. If jump was FALSE when the Viewpoint node is bound, but changed to
TRUE before the set_bind FALSE is sent, the Viewpoint node does perform the un-jump during unbind.

Note that there are two other mechanisms that result in the binding of a new Viewpoint:

j. An Anchor node's url field specifies a "#ViewpointName".

k. A script invokes the loadURL() method and the URL argument specifies a "#ViewpointName".

Both of these mechanisms override the jump field value of the specified Viewpoint node (#ViewpointName) and
assume that jump is TRUE when binding to the new Viewpoint. The behaviour of the viewer transition to the newly
bound Viewpoint depends on the currently bound NavigationInfo node's type field value (see 6.29, NavigationInfo).

The fieldOfView field specifies a preferred minimum viewing angle from this viewpoint in radians. A small field of
view roughly corresponds to a telephoto lens; a large field of view roughly corresponds to a wide-angle lens. The
field of view shall be greater than zero and smaller than π. The value of fieldOfView represents the minimum
viewing angle in any direction axis perpendicular to the view. For example, a browser with a rectangular viewing
projection shall have the following relationship:

 display width tan(FOVhorizontal/2)
 -------------- = -----------------
 display height tan(FOVvertical/2)

where the smaller of display width or display height determines which angle equals the fieldOfView (the larger angle
is computed using the relationship described above). The larger angle shall not exceed π and may force the smaller
angle to be less than fieldOfView in order to sustain the aspect ratio.

The description field specifies a textual description of the Viewpoint node. This may be used by browser-specific
user interfaces. If a Viewpoint's description field is empty it is recommended that the browser not present this
Viewpoint in its browser-specific user interface.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

130

The URL syntax ".../scene.wrl#ViewpointName" specifies the user's initial view when loading
"scene.wrl" to be the first Viewpoint node in the VRML file that appears as
DEF ViewpointName Viewpoint {...}. This overrides the first Viewpoint node in the VRML file as the
initial user view, and a set_bind TRUE message is sent to the Viewpoint node named "ViewpointName". If the
Viewpoint node named "ViewpointName" is not found, the browser shall use the first Viewpoint node in the VRML
file (i.e. the normal default behaviour). The URL syntax "#ViewpointName" (i.e. no file name) specifies a
viewpoint within the existing VRML file. If this URL is loaded (e.g. Anchor node's url field or loadURL()
method is invoked by a Script node), the Viewpoint node named "ViewpointName" is bound (a set_bind TRUE
event is sent to this Viewpoint node).

The results are undefined if a Viewpoint node is bound and is the child of an LOD, Switch, or any node or prototype
that disables its children. If a Viewpoint node is bound that results in collision with geometry, the browser shall
perform its self-defined navigation adjustments as if the user navigated to this point (see 6.8, Collision).

6.54 VisibilitySensor

VisibilitySensor {
 exposedField SFVec3f center 0 0 0 # (-∞,∞)
 exposedField SFBool enabled TRUE
 exposedField SFVec3f size 0 0 0 # [0,∞)
 eventOut SFTime enterTime
 eventOut SFTime exitTime
 eventOut SFBool isActive
}

The VisibilitySensor node detects visibility changes of a rectangular box as the user navigates the world.
VisibilitySensor is typically used to detect when the user can see a specific object or region in the scene in order to
activate or deactivate some behaviour or animation. The purpose is often to attract the attention of the user or to
improve performance.

The enabled field enables and disables the VisibilitySensor node. If enabled is set to FALSE, the VisibilitySensor
node does not send events. If enabled is TRUE, the VisibilitySensor node detects changes to the visibility status of
the box specified and sends events through the isActive eventOut. A TRUE event is output to isActive when any
portion of the box impacts the rendered view. A FALSE event is sent when the box has no effect on the view.
Browsers shall guarantee that, if isActive is FALSE, the box has absolutely no effect on the rendered view. Browsers
may err liberally when isActive is TRUE. For example, the box may affect the rendering.

The exposed fields center and size specify the object space location of the box centre and the extents of the box
(i.e., width, height, and depth). The VisibilitySensor node's box is affected by hierarchical transformations of its
parents. The components of the size field shall be greater than or equal to zero.

The enterTime event is generated whenever the isActive TRUE event is generated, and exitTime events are generated
whenever isActive FALSE events are generated. A VisibilitySensor read from a VRML file shall generate isActive
TRUE and enterTime events if the sensor is enabled and the visibility box is visible. A VisibilitySensor inserted into
the transformation hierarchy shall generate isActive TRUE and enterTime events if the sensor is enabled and the
visibility box is visible. A VisibilitySensor removed from the transformation hierarchy shall generate isActive
FALSE and exitTime events if the sensor is enabled and the visibility box is visible.

Each VisibilitySensor node behaves independently of all other VisibilitySensor nodes. Every enabled
VisibilitySensor node that is affected by the user's movement receives and sends events, possibly resulting in
multiple VisibilitySensor nodes receiving and sending events simultaneously. Unlike TouchSensor nodes, there is no
notion of a VisibilitySensor node lower in the scene graph "grabbing" events. Multiply instanced VisibilitySensor

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

131

nodes (i.e., DEF/USE) use the union of all the boxes defined by their instances. An instanced VisibilitySensor node
shall detect visibility changes for all instances of the box and send events appropriately.

6.55 WorldInfo

WorldInfo {
 field MFString info []
 field SFString title ""
}

The WorldInfo node contains information about the world. This node is strictly for documentation purposes and has
no effect on the visual appearance or behaviour of the world. The title field is intended to store the name or title of
the world so that browsers can present this to the user (perhaps in the window border). Any other information about
the world can be stored in the info field, such as author information, copyright, and usage instructions.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

132

7 Conformance and minimum support
requirements

7.1 Introduction

7.1.1 Table of contents

7.1 Introduction
 7.1.1 Table of contents
 7.1.2 Objectives
 7.1.3 Scope
7.2 Conformance
 7.2.1 Conformance of VRML files
 7.2.2 Conformance of VRML generators
 7.2.3 Conformance of VRML browsers
7.3 Minimum support requirements
 7.3.1 Minimum support requirements for generators
 7.3.2 Minimum support requirements for browsers
 7.3.3 VRML requirements for conforming to the base profile
 7.3.4 Sound priority, attenuation, and spatialization

7.1.2 Objectives

This clause addresses conformance of VRML files, VRML generators and VRML browsers.

The primary objectives of the specifications in this clause are:

a. to promote interoperability by eliminating arbitrary subsets of, or extensions to, ISO/IEC 14772;

b. to promote uniformity in the development of conformance tests;

c. to promote consistent results across VRML browsers;

d. to facilitate automated test generation.

7.1.3 Scope

Conformance is defined for VRML files and for VRML browsers. For VRML generators, conformance guidelines
are presented for enhancing the likelihood of successful interoperability.

A concept of base profile conformance is defined to ensure interoperability of VRML generators and VRML
browsers. Base profile conformance is based on a set of limits and minimal requirements. Base profile conformance
is intended to provide a functional level of reasonable utility for VRML generators while limiting the complexity
and resource requirements of VRML browsers. Base profile conformance may not be adequate for all uses of
VRML.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

133

This clause addresses the VRML data stream and implementation requirements. Implementation requirements
include the latitude allowed for VRML generators and VRML browsers. This clause does not directly address the
environmental, performance, or resource requirements of the generator or browser.

This clause does not define the application requirements or dictate application functional content within a VRML
file.

The scope of this clause is limited to rules for the open interchange of VRML content.

7.2 Conformance

7.2.1 Conformance of VRML files

A VRML file is syntactically correct according to ISO/IEC 14772 if the following conditions are met:

a. The VRML file contains as its first element a VRML header comment (see 4.2.2, Header).

b. All entities contained therein match the functional specification of the corresponding entities of ISO/IEC
14772-1. The VRML file shall obey the relationships defined in the formal grammar and all other syntactic
requirements.

c. The sequence of entities in the VRML file obeys the relationships specified in ISO/IEC 14772-1 producing
the structure specified in ISO/IEC 14772-1.

d. All field values in the VRML file obey the relationships specified in ISO/IEC 14772-1 producing the
structure specified in ISO/IEC 14772-1.

e. No nodes appear in the VRML file other than those specified in ISO/IEC 14772-1 unless required for the
encoding technique or those defined by the PROTO or EXTERNPROTO entities.

f. The VRML file is encoded according to the rules of ISO/IEC 14772.

g. It does not contain behaviour described as undefined elsewhere in this specification.

A VRML file conforms to the base profile if:

h. It is syntactically correct.

i. It meets the restrictions of Table 7.1.

7.2.2 Conformance of VRML generators

A VRML generator is conforming to this part of ISO/IEC 14772 if all VRML files that are generated are
syntactically correct.

A VRML generator conforms to the base profile if it can be configured such that all VRML files generated conform
to the base profile.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

134

7.2.3 Conformance of VRML browsers

A VRML browser conforms to the base profile if:

a. It is able to read any VRML file that conforms to the base profile.

b. It presents the graphical and audio characteristics of the VRML nodes in any VRML file that conforms to
the base profile, within the latitude defined in this clause.

c. It correctly handles user interaction and generation of events as specified in ISO/IEC 14772, within the
latitude defined in this clause.

d. It satisfies the requirements of 7.3.2, Minimum support requirements for browsers, as enumerated in Table
7.1.

7.3 Minimum support requirements

7.3.1 Minimum support requirements for generators

There is no minimum complexity which is required of (or appropriate for) VRML generators. Any compliant set of
nodes of arbitrary complexity may be generated, as appropriate to represent application content.

7.3.2 Minimum support requirements for browsers

This subclause defines the minimum complexity which shall be supported by a VRML browser. Browser
implementations may choose to support greater limits but may not reduce the limits described in Table 7.1. When
the VRML file contains nodes which exceed the limits implemented by the browser, the results are undefined.
Where latitude is specified in Table 7.1 for a particular node, full support is required for other aspects of that node.

7.3.3 VRML requirements for conforming to the base profile

In the following table, the first column defines the item for which conformance is being defined. In some cases,
general limits are defined but are later overridden in specific cases by more restrictive limits. The second column
defines the requirements for a VRML file conforming to the base profile; if a VRML file contains any items that
exceed these limits, it may not be possible for a VRML browser conforming to the base profile to successfully parse
that VRML file. The third column defines the minimum complexity for a VRML scene that a VRML browser
conforming to the base profile shall be able to present to the user. The word "ignore" in the minimum browser
support column refers only to the display of the item; in particular, set_ events to ignored exposedFields must still
generate corresponding _changed events.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

135

Table 7.1 -- Specifications for VRML browsers conforming to the base profile

Item VRML File Limit Minimum Browser Support

All groups 500 children. 500 children. Ignore bboxCenter and bboxSize.

All interpolators 1000 key-value pairs. 1000 key-value pairs.

All lights 8 simultaneous lights. 8 simultaneous lights.

Names for DEF/PROTO/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.
10 URLs. URN's ignored.
Support `http', `file', and `ftp' protocols.
Support relative URLs where relevant.

PROTO/
EXTERNPROTO

30 fields, 30 eventIns,
30 eventOuts, 30
exposedFields.

30 fields, 30 eventIns, 30 eventOuts, 30 exposedFields.

 EXTERNPROTO n/a URL references VRML files conforming to the base
profile

PROTO definition nesting
depth

5 levels. 5 levels.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFFloat No restrictions. Full support.

SFImage 256 width. 256 height. 256 width. 256 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2f 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

136

MFColor 15,000 values. 15,000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString 30,000 utf8 octets per
string, 10 strings.

30,000 utf8 octets per string, 10 strings.

MFTime 1,000 values. 1,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Anchor No restrictions. Ignore parameter. Ignore description.

Appearance No restrictions. Full support.

AudioClip
30 second
uncompressed PCM
WAV.

30 second uncompressed PCM WAV. Ignore
description.

Background No restrictions. One skyColor, one groundColor, panorama images as
per ImageTexture.

Billboard Restrictions as for all
groups.

Full support except as for all groups.

Box No restrictions. Full support.

Collision Restrictions as for all
groups.

Full support except as for all groups. Any navigation
behaviour acceptable when collision occurs.

Color 15,000 colours. 15,000 colours.

ColorInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

Cone No restrictions. Full support.

Coordinate 15,000 points. 15,000 points.

CoordinateInterpolator 15,000 coordinates per 15,000 coordinates per keyValue. Support as for all

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

137

keyValue. Restrictions
as for all interpolators.

interpolators.

Cylinder No restrictions. Full support.

CylinderSensor No restrictions. Full support.

DirectionalLight No restrictions. Not scoped by parent Group or Transform.

ElevationGrid 16,000 heights. 16,000 heights.

Extrusion
(#crossSection
points)*(#spine points)
<= 2,500.

(#crossSection points)*(#spine points) <= 2,500.

Fog No restrictions. "EXPONENTIAL" treated as "LINEAR"

FontStyle No restrictions.

If the values of the text aspects character set, family,
style cannot be simultaneously supported, the order of
precedence shall be: 1) character set 2) family 3) style.
Browser must display all characters in ISO 8859-1
character set 2.[I8859].

Group Restrictions as for all
groups.

Full support except as for all groups.

ImageTexture
JPEG and PNG format.
Restrictions as for
PixelTexture.

JPEG and PNG format. Support as for PixelTexture.

IndexedFaceSet
10 vertices per face.
5000 faces. Less than
15,000 indices.

10 vertices per face. 5000 faces. 15,000 indices in any
index field.

IndexedLineSet
15,000 total vertices.
15,000 indices in any
index field.

15,000 total vertices. 15,000 indices in any index field.

Inline No restrictions.
Full support except as for all groups.
url references VRML files conforming to the base
profile

LOD Restrictions as for all
groups.

At least first 4 level/range combinations interpreted, and
support as for all groups. Implementations may
disregard level distances.

Material No restrictions.
Ignore ambient intensity. Ignore specular colour. Ignore
emissive colour. One-bit transparency; transparency
values >= 0.5 transparent.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

138

MovieTexture MPEG1-Systems and
MPEG1-Video formats.

MPEG1-Systems and MPEG1-Video formats. Display
one active movie texture. Ignore speed field.

NavigationInfo No restrictions. Ignore avatarSize. Ignore visibilityLimit.

Normal 15,000 normals 15,000 normals

NormalInterpolator
15,000 normals per
keyValue. Restrictions
as for all interpolators.

15,000 normals per keyValue. Support as for all
interpolators.

OrientationInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

PixelTexture 256 width. 256 height.256 width. 256 height. Display fully transparent and
fully opaque pixels.

PlaneSensor No restrictions. Full support.

PointLight No restrictions. Ignore radius. Linear attenuation.

PointSet 5000 points. 5000 points.

PositionInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

ProximitySensor No restrictions. Full support.

ScalarInterpolator Restrictions as for all
interpolators.

Full support except as for all interpolators.

Script 25 eventIns. 25
eventOuts. 25 fields.

25 eventIns. 25 eventOuts. 25 fields.
No scripting language support required.

Shape No restrictions. Full support.

Sound No restrictions. 2 active sounds. Linear distance attenuation. No
spatialization. See 7.3.4.

Sphere No restrictions. Full support.

SphereSensor No restrictions. Full support.

SpotLight No restriction Ignore beamWidth. Ignore radius. Linear attenuation.

Switch Restrictions as for all
groups.

Full support except as for all groups.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

139

Text 100 characters per
string. 100 strings.

100 characters per string. 100 strings.

TextureCoordinate 15,000 coordinates. 15,000 coordinates.

TextureTransform No restrictions. Full support.

TimeSensor No restrictions. Ignored if cycleInterval < 0.01 second.

TouchSensor No restrictions. Full support.

Transform Restrictions as for all
groups.

Full support except as for all groups.

Viewpoint No restrictions. Ignore fieldOfView. Ignore description.

VisibilitySensor No restrictions. Always visible.

WorldInfo No restrictions. Ignored.

7.3.4 Sound priority, attenuation, and spatialization

7.3.4.1 Sound priority

If the browser does not have the resources to play all of the currently active sounds, it is recommended that the
browser sort the active sounds into an ordered list using the following sort keys in the order specified:

a. decreasing priority;

b. for sounds with priority > 0.5, increasing (now-startTime);

c. decreasing intensity at viewer location (intensity × intensity attenuation);

where priority is the priority field of the Sound node, now represents the current time, startTime is the startTime
field of the audio source node specified in the source field, and intensity attenuation refers to the intensity multiplier
derived from the linear decibel attenuation ramp between inner and outer ellipsoids.

It is important that sort key 2 be used for the high priority (event and cue) sounds so that new cues will be heard
even when the browser is "full" of currently active high priority sounds. Sort key 2 should not be used for normal
priority sounds, so selection among them will be based on sort key 3 (intensity at the location of the viewer).

The browser shall play as many sounds from the beginning of this sorted list as it can given available resources and
allowable latency between rendering. On most systems, the resources available for MIDI streams are different from
those for playing sampled sounds, thus it may be beneficial to maintain a separate list to handle MIDI data.

7.3.4.2 Sound attenuation and spatialization

In order to create a linear decrease in loudness as the viewer moves from the inner to the outer ellipsoid of the
sound, the attenuation must be based on a linear decibel ramp. To make the falloff consistent across browsers, the
decibel ramp is to vary from 0 dB at the minimum ellipsoid to -20 dB at the outer ellipsoid. Sound nodes with an
outer ellipsoid that is ten times larger than the minimum will display the inverse square intensity dropoff that
approximates sound attenuation in an anechoic environment.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

140

Browsers may support spatial localization of sounds whose spatialize field is TRUE as well as their underlying
sound libraries will allow. Browsers shall at least support stereo panning of non-MIDI sounds based on the angle
between the viewer and the source. This angle is obtained by projecting the Sound location (in global space) onto
the XZ plane of the viewer. Determine the angle between the Z-axis and the vector from the viewer to the
transformed location, and assign a pan value in the range [0.0, 1.0] as depicted in Figure 7.1. Given this pan value,
left and right channel levels can be obtained using the following equations:

 leftPanFactor = 1 - pan2

 rightPanFactor = 1 - (1 - pan)2

Figure 7.1: Stereo Panning

Using this technique, the loudness of the sound is modified by the intensity field value, then distance attenuation to
obtain the unspatialized audio output. The values in the unspatialized audio output are then scaled by leftPanFactor
and rightPanFactor to determine the final left and right output signals. The use of more sophisticated localization
techniques is encouraged, but not required (see E.[SNDB]).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

141

Annex A
(normative)

Grammar definition

A.1 Table of contents and introduction

A.1.1 Table of contents

This annex provides a detailed description of the grammar for each syntactic element in this part of ISO/IEC 14772.
The following table of contents lists the topics in this clause:

A.1 Table of contents and introduction
 A.1.1 Table of contents
 A.1.2 Introduction
A.2 General
A.3 Nodes
A.4 Fields

A.1.2 Introduction

It is not possible to parse VRML files using a context-free grammar. Semantic knowledge of the names and types of
fields, eventIns, and eventOuts for each node type (either built-in or user-defined using PROTO or
EXTERNPROTO) shall be used during parsing so that the parser knows which field type is being parsed.

The '#' (0x23) character begins a comment wherever it appears outside of the first line of the VRML file or quoted
SFString or MFString fields. The '#' character and all characters until the next line terminator comprise the comment
and are treated as whitespace.

The carriage return (0x0d), linefeed (0x0a), space (0x20), tab (0x09), and comma (0x2c) characters are whitespace
characters wherever they appear outside of quoted SFString or MFString fields. Any number of whitespace
characters and comments may be used to separate the syntactic entities of a VRML file. All reserved keywords are
displayed in boldface type.

Any characters (including linefeed and '#') may appear within the quotes of SFString and MFString fields. A double
quote character within a string shall be preceded with a backslash (e.g, "Each double quotes character \"
shall have a backslash."). A backslash character within a string shall be preceded with a backslash forming two
backslashes (e.g., "One backslash \\ character").

Clause 6, Nodes reference, contains a description of the allowed fields, eventIns and eventOuts for all pre-defined
node types. The double, float, and int32 symbols are expressed using Perl regular expression syntax; see E.[PERL]
for details. The IdFirstChar, IdRestChars, and string symbols have not been formally specified; Clause 5, Fields and
events reference, contains a more complete description of their syntax.

The following conventions are used in the semi-formal grammar specified in this clause:

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

142

a. Keywords and terminal symbols which appear literally in the VRML file, are specified in bold.

b. Nonterminal symbols used in the grammar are specified in italic.

c. Production rules begin with a nonterminal symbol and the sequence of characters "::=", and end with a
semi-colon (";").

d. Alternation for production rules is specified using the vertical-bar symbol ("|").

Table A.1 contains the complete list of lexical elements for the grammar in this part of ISO/IEC 14772.

Table A.1 -- VRML lexical elements

 Keywords
Terminal
symbols

Other
symbols

 DEF
 EXTERNPROTO
 FALSE
 IS
 NULL
 PROTO
 ROUTE
 TO
 TRUE
 USE
 eventIn
 eventOut
 exposedField
 field

 period (.)
 open brace ({)
 close brace (})
 open bracket ([)
 close bracket (])

 Id
 double
 fieldType
 float
 int32
 string

Terminal symbols and the string symbol may be separated by one or more whitespace characters. Keywords and the
Id, fieldType, float, int32, and double symbols shall be separated by one or more whitespace characters.

A.2 General
vrmlScene ::=

statements ;

statements ::=
statement |
statement statements |
empty ;

statement ::=
nodeStatement |
protoStatement |
routeStatement ;

nodeStatement ::=
node |
DEF nodeNameId node |
USE nodeNameId ;

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

143

rootNodeStatement ::=
node | DEF nodeNameId node ;

protoStatement ::=
proto |
externproto ;

protoStatements ::=
protoStatement |
protoStatement protoStatements |
empty ;

proto ::=
PROTO nodeTypeId [interfaceDeclarations] { protoBody } ;

protoBody ::=
protoStatements rootNodeStatement statements ;

interfaceDeclarations ::=
interfaceDeclaration |
interfaceDeclaration interfaceDeclarations |
empty ;

restrictedInterfaceDeclaration ::=
eventIn fieldType eventInId |
eventOut fieldType eventOutId |
field fieldType fieldId fieldValue ;

interfaceDeclaration ::=
restrictedInterfaceDeclaration |
exposedField fieldType fieldId fieldValue ;

externproto ::=
EXTERNPROTO nodeTypeId [externInterfaceDeclarations] URLList ;

externInterfaceDeclarations ::=
externInterfaceDeclaration |
externInterfaceDeclaration externInterfaceDeclarations |
empty ;

externInterfaceDeclaration ::=
eventIn fieldType eventInId |
eventOut fieldType eventOutId |
field fieldType fieldId |
exposedField fieldType fieldId ;

routeStatement ::=
ROUTE nodeNameId . eventOutId TO nodeNameId . eventInId ;

URLList ::=
mfstringValue ;

empty ::=
;

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

144

A.3 Nodes
node ::=

nodeTypeId { nodeBody } |
Script { scriptBody } ;

nodeBody ::=
nodeBodyElement |
nodeBodyElement nodeBody |
empty ;

scriptBody ::=
scriptBodyElement |
scriptBodyElement scriptBody |
empty ;

scriptBodyElement ::=
nodeBodyElement |
restrictedInterfaceDeclaration |
eventIn fieldType eventInId IS eventInId |
eventOut fieldType eventOutId IS eventOutId |
field fieldType fieldId IS fieldId ;

nodeBodyElement ::=
fieldId fieldValue |
fieldId IS fieldId |
eventInId IS eventInId |
eventOutId IS eventOutId |
routeStatement |
protoStatement ;

nodeNameId ::=
Id ;

nodeTypeId ::=
Id ;

fieldId ::=
Id ;

eventInId ::=
Id ;

eventOutId ::=
Id ;

Id ::=
IdFirstChar |
IdFirstChar IdRestChars ;

IdFirstChar ::=
Any ISO-10646 character encoded using UTF-8 except: 0x30-0x39, 0x0-0x20, 0x22, 0x23, 0x27, 0x2b, 0x2c,
0x2d, 0x2e, 0x5b, 0x5c, 0x5d, 0x7b, 0x7d, 0x7f ;

IdRestChars ::=
Any number of ISO-10646 characters except: 0x0-0x20, 0x22, 0x23, 0x27, 0x2c, 0x2e, 0x5b, 0x5c, 0x5d, 0x7b,
0x7d, 0x7f ;

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

145

A.4 Fields
fieldType ::=

MFColor |
MFFloat |
MFInt32 |
MFNode |
MFRotation |
MFString |
MFTime |
MFVec2f |
MFVec3f |
SFBool |
SFColor |
SFFloat |
SFImage |
SFInt32 |
SFNode |
SFRotation |
SFString |
SFTime |
SFVec2f |
SFVec3f ;

fieldValue ::=
sfboolValue |
sfcolorValue |
sffloatValue |
sfimageValue |
sfint32Value |
sfnodeValue |
sfrotationValue |
sfstringValue |
sftimeValue |
sfvec2fValue |
sfvec3fValue |
mfcolorValue |
mffloatValue |
mfint32Value |
mfnodeValue |
mfrotationValue |
mfstringValue |
mftimeValue |
mfvec2fValue |
mfvec3fValue ;

sfboolValue ::=
TRUE |
FALSE ;

sfcolorValue ::=
float float float ;

sffloatValue ::=
float ;

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

146

float ::=
([+/-]?((([0-9]+(\.)?)|([0-9]*\.[0-9]+))([eE][+\-]?[0-9]+)?)).

sfimageValue ::=
int32 int32 int32 ...

sfint32Value ::=
int32 ;

int32 ::=
([+\-]?(([0-9]+)|(0[xX][0-9a-fA-F]+)))

sfnodeValue ::=
nodeStatement |
NULL ;

sfrotationValue ::=
float float float float ;

sfstringValue ::=
string ;

string ::=
".*" ... double-quotes must be \", backslashes must be \\...

sftimeValue ::=
double ;

double ::=
([+/-]?((([0-9]+(\.)?)|([0-9]*\.[0-9]+))([eE][+\-]?[0-9]+)?))

mftimeValue ::=
sftimeValue |
[] |
[sftimeValues] ;

sftimeValues ::=
sftimeValue |
sftimeValue sftimeValues ;

sfvec2fValue ::=
float float ;

sfvec3fValue ::=
float float float ;

mfcolorValue ::=
sfcolorValue |
[] |
[sfcolorValues] ;

sfcolorValues ::=

sfcolorValue |

sfcolorValue sfcolorValues ;

mffloatValue ::=

sffloatValue |

[] |

[sffloatValues] ;

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

147

sffloatValues ::=
sffloatValue |
sffloatValue sffloatValues ;

mfint32Value ::=
sfint32Value |
[] |
[sfint32Values] ;

sfint32Values ::=
sfint32Value |
sfint32Value sfint32Values ;

mfnodeValue ::=
nodeStatement |
[] |
[nodeStatements] ;

nodeStatements ::=
nodeStatement |
nodeStatement nodeStatements ;

mfrotationValue ::=
sfrotationValue |
[] |
[sfrotationValues] ;

sfrotationValues ::=
sfrotationValue |
sfrotationValue sfrotationValues ;

mfstringValue ::=
sfstringValue |
[] |
[sfstringValues] ;

sfstringValues ::=
sfstringValue |
sfstringValue sfstringValues ;

mfvec2fValue ::=
sfvec2fValue |
[] |
[sfvec2fValues] ;

sfvec2fValues ::=
sfvec2fValue |
sfvec2fValue sfvec2fValues ;

mfvec3fValue ::=
sfvec3fValue |
[] |
[sfvec3fValues] ;

sfvec3fValues ::=

sfvec3fValue |

sfvec3fValue sfvec3fValues ;

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

148

Annex B
(normative)

Java platform scripting reference

B.1 Introduction
This annex describes the Java platform classes and methods that enable Script nodes (see 6.40, Script) to interact
with VRML scenes. See 4.12, Scripting, for a general description of scripting languages in ISO/IEC 14772. Note
that support for the Java platform is not required by ISO/IEC 14772, but any access of the Java platform from within
VRML Script nodes shall conform with the requirements specified in this annex.

B.1 Introduction
B.2 Platform
B.3 Supported protocol in the Script node's url field
 B.3.1 url field
 B.3.2 File extension
 B.3.3 MIME type
B.4 EventIn handling
 B.4.1 Description
 B.4.2 Parameter passing with event objects
 B.4.3 processEvents() and processEvent() methods
 B.4.3.1 processEvents() method
 B.4.3.2 processEvent() method
 B.4.4 eventsProcessed() method
 B.4.5 shutdown() method
 B.4.6 initialize() method
B.5 Accessing fields and events
 B.5.1 Accessing fields, eventIns and eventOuts of the script
 B.5.2 Accessing fields, eventIns and eventOuts of other nodes
 B.5.3 Sending eventOuts or eventIns
B.6 Exposed classes and methods for nodes and fields
 B.6.1 Introduction
 B.6.2 Field class and ConstField class
 B.6.3 Array handling
 B.6.3.1 Format
 B.6.3.2 Constructors and methods
 B.6.4 Node class
 B.6.5 Browser class
 B.6.6 User-defined classes and packages
 B.6.7 Standard Java platform packages
B.7 Exceptions
B.8 Examples
B.9 Class definitions
 B.9.1 Class hierarchy

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

149

 B.9.2 VRML packages
 B.9.2.1 vrml package
 B.9.2.2 vrml.field package
 B.9.2.3 vrml.node package
B.10 Example of exception class

B.2 Platform
The Javatm platform is an object-oriented, hardware and operating system independent, multi-threaded, general-
purpose application environment developed by Sun Microsystems, Inc. The Java platform consists of the language,
the virtual machine, and a set of core class libraries. A conforming Java platform implements all three components
according to their specifications. See 2.[JAVA] for a description of the language, the virtual machine, and the three
core classes java.lang, java.util, and java.io. The other core class libraries, which are not used in this annex, are
described in E.[JAPI].

B.3 Supported protocol in the script node’s url field

B.3.1 url field

The url field of the Script node may contain URL references to Java bytecode as illustrated below:

 Script {
 url "http://foo.co.jp/Example.class"
 eventIn SFBool start
 }

B.3.2 File extension

The file extension for Java bytecode is .class.

B.3.3 MIME type

The MIME type for Java bytecode is defined as follows:

 application/x-java

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

150

B.4 EventIn handling

B.4.1 Description

Events to the Script node are passed to the corresponding Java platform method (processEvents() or processEvent())
in the script. The script is specified in the url field of the Script node.

For a Java bytecode file specified in the url field, the following three conditions hold:

a. it shall contain the class definition whose name is exactly the same as the body of the file name

b. it shall be a subclass of the Script class (see B.9.2.3, vrml.node package)

c. it shall be declared as a "public" class

For example, the following Script node has one eventIn whose name is start.

 Script {
 url "http://foo.co.jp/Example1.class"
 eventIn SFBool start
 }

This node points to the script file Example1.class. Its source (Example1.java) looks like this:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example1 extends Script {
 ...
 // This method is called when any event is received
 public void processEvent(Event e){
 // ... perform some operation ...
 }
 }

In the above example, when the start eventIn is sent the processEvent() method receives the eventIn and is executed.

B.4.2 Parameter passing with Event objects

When a Script node receives an eventIn, a processEvent() or processEvents() method in the file specified in the url
field of the Script node is called, which receives the eventIn as a Java platform object (Event object, see
B.4.3, processEvents() and processEvent() methods).

The Event object has three fields of information associated with it: name, value, and timestamp, whose values are
passed by the eventIn. These can be retrieved using the corresponding method on the Event object.

 public class Event implements Cloneable {
 public String getName();
 public ConstField getValue();
 public double getTimeStamp();
 // other methods ...
 }

Suppose that the eventIn type is SFXXX and eventIn name is eventInYYY, then

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

151

a. getName() shall return the string "eventInYYY "

b. getValue() shall return ConstField containing the value of the eventIn

c. getTimeStamp() shall return a double (in seconds) containing the timestamp when the eventIn occurred
(see 4.11, Time)

In the example below, the eventIn name is start and the eventIn value is cast to ConstSFBool. Also, the timestamp
for the time when the eventIn occurred is available as a double. These are passed as an Event object to the
processEvent() method:

 public void processEvent(Event e){
 if(e.getName().equals("start")){
 ConstSFBool v = (ConstSFBool)e.getValue();
 if(v.getValue()==true){
 // ... perform some operation with e.getTimeStamp()...
 }
 }
 }

B.4.3 processEvents() and processEvent() methods

B.4.3.1 processEvents() method

Authors can define a processEvents() method within a class that is called when the script receives some set of
events. The prototype of the processEvents() method is public void processEvents(int
count, Event events[]);

count indicates the number of events delivered. events is the array of events delivered. Its default behaviour is to
iterate over each event, calling processEvent() on each one as follows:

 public void processEvents(int count, Event events[])
 {
 for (int i = 0; i < count; i++){
 processEvent(events[i]);
 }
 }

Although authors might change this operation by giving a user-defined processEvents() method, in most cases, they
only change the processEvent() method and the eventsProcessed() method as described below.

When multiple eventIns are routed from a single node to a single Script node and eventIns which have the same
timestamp are received, processEvents() receives multiple events as an event array. Otherwise, each incoming event
invokes separate processEvents().

For example, the processEvents() method receives two events in the following case, when the TouchSensor is
activated:

 Transform {
 children [
 DEF TS TouchSensor {}
 Shape { geometry Cone {} }
]
 }
 DEF SC Script {
 url "Example.class"
 eventIn SFBool isActive
 eventIn SFTime touchTime

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

152

 }
 ROUTE TS.isActive TO SC.isActive
 ROUTE TS.touchTime TO SC.touchTime

B.4.3.2 processEvent() method

Authors can define a processEvent() method within a class. The prototype of the processEvent() is
public void processEvent(Event event);

Its default behaviour is no operation.

B.4.4 eventsProcessed() method

Authors may define an eventsProcessed() method within a class that is called after some set of events has been
received. This allows Script nodes that do not rely on the ordering of events received to generate fewer events than
an equivalent Script node that generates events whenever events are received (see B.4.3.1, processEvents() method).

The prototype of the eventsProcessed() method is public void eventsProcessed();

Its default behaviour is no operation.

B.4.5 shutdown() method

Authors may define a shutdown() method within the Script class that is called when the corresponding Script node is
deleted or the world containing the Script node is unloaded or replaced by another world
(see 4.12.3, Initialize() and shutdown()).

The prototype of the shutdown() method is public void shutdown();

Its default behaviour is no operation.

B.4.6 initialize() method

Authors may define an initialize() method within the Script class that is called before the browser presents the world
to the user and before any events are processed by any nodes in the same VRML file as the Script node containing
this script (see 4.12.3, Initialize() and shutdown()). The various methods of the Script class such as getEventIn(),
getEventOut(), getExposedField(), and getField() are not guaranteed to return correct values before the initialize()
method has been executed. The initialize() method is called once during the life of the Script object.

The prototype of the initialize() method is public void initialize();

Its default behaviour is no operation. See Example2.java in B.5.1 for an example of a user-specified initialize()
method.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

153

B.5 Accessing fields and events

B.5.1 Accessing fields, eventIns and eventOuts of the script

The fields, eventIns, and eventOuts of a Script node are accessible from its corresponding Script class. Each field
defined in the Script node is available to the Script class by using its name. Its value can be read-from or written-
into. This value is persistent across function calls. EventOuts defined in the Script node can be read. EventIns
defined in the Script node can be written to.

Accessing the fields of the Script node can be done by using the following three types of Script class methods:

a. Field getField(String fieldName)
is the method to get the reference to the Script node's field whose name is fieldName. The return value can
be converted to the appropriate subclass of the Field class, (see B.6.2, Field class and ConstField class).

b. Field getEventOut(String eventOutName)
is the method to get the reference to the Script node's eventOut whose name is eventOutName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField class).

c. Field getEventIn(String eventInName)
is the method to get the reference to the Script node's eventIn whose name is eventInName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField class). EventIn is a write-only field. When the getValue() method is
invoked on a Field object obtained by the getEventIn() method, the return value is unspecified.

When the setValue(), set1Value(), addValue(), insertValue(), delete() or clear() methods are invoked on a Field
object obtained by the getField() method, the new value is stored in the corresponding VRML node's field (see also
B.6.2, Field class and ConstField class, and B.6.3, Array handling). In the case of the set1Value(), addValue(),
insertValue() or delete() methods, all elements of the VRML node's field are retrieved, then the value specified as an
argument is set, added, inserted, deleted (as appropriate) to/from the elements, and then stored as the elements in the
corresponding VRML node's field. In the case of the clear() method, all elements of a VRML node's field are
cleared (see the definition of the clear() method).

When the setValue(), set1Value(), addValue(), insertValue(), delete() or clear() methods are invoked on a Field
object obtained by the getEventOut() method, the call generates an eventOut in the VRML scene (see also
B.6.2, Field class and ConstField class, and B.6.3, Array handling). The effect of this eventOut is specified by the
associated Route(s) in the VRML scene. In the case of the set1Value(), addValue(), insertValue() or delete()
methods, all elements of the VRML node's eventOut are retrieved, then the value specified as an argument is set,
added, inserted or deleted (as appropriate) to/from the elements, then stored as the elements in the corresponding
VRML node's eventOut, and then the eventOut is sent. In the case of the clear() method, all elements of VRML
node's eventOut are cleared and an eventOut with zero elements is sent (see the definition of the clear() method).

When the setValue() or clear() methods are invoked on a Field object obtained by the getEventIn() method, the call
generates an eventIn to the Script node. When the set1Value(), addValue(), insertValue() or delete() methods are
invoked on a Field object obtained by the getEventIn() method, the exception (InvalidFieldChangeException) is
thrown.

For example, the following Script node (Example2) defines an eventIn start, a field state, and an eventOut on. The
method initialize() is invoked before any events are received, and the method processEvent() is invoked when start
receives an event:

 Script {

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

154

 url "Example2.class"
 eventIn SFBool start
 field SFBool state TRUE
 eventOut SFBool on
 }

Example2.java:

 // Example2 toggles a persistent field variable "state" in the VRML
 // Script node each time an eventIn "start" is received, then sets
 // eventOut "on" equal to the value of "state"
 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example2 extends Script {
 private SFBool state; // field
 private SFBool on; // eventOut

 public void initialize(){
 state = (SFBool) getField("state");
 on = (SFBool) getEventOut("on");
 }

 public void processEvent(Event e){
 if(state.getValue()==true){
 on.setValue(false); // set false to eventOut ’on’
 state.setValue(false);
 }
 else {
 on.setValue(true); // set true to eventOut ’on’
 state.setValue(true);
 }
 }
 }

B.5.2 Accessing fields, eventIns and eventOuts of other nodes

If a script program has an access to a node, any eventIn, eventOut or exposedField of that node is accessible by
using the getEventIn(), getEventOut() or getExposedField() method defined in the node's class (see B.6.4, Node
class).

The typical way for a Script node to have an access to another VRML node is to have an SFNode field which
provides a reference to the other node. The following Example3 shows how this is done:

 DEF SomeNode Transform {}
 Script {
 field SFNode node USE SomeNode # SomeNode is a Transform node
 eventIn SFVec3f pos # new value to be inserted in
 # SomeNode’s translation field
 url "Example3.class"
 }

Example3.java:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example3 extends Script {
 private SFNode node; // field
 private SFVec3f trans; // translation field captured from remote
 // Transform node

 public void initialize(){
 node = (SFNode) getField("node");

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

155

 }

 public void processEvent(Event e){
 // get the reference to the ’translation’ field of the Transform node
 trans = (SFVec3f)((Node) node.getValue()).getExposedField("translation");
 // reset translation to value given in Event e, which is eventIn pos
 // in the VRML Script node.
 trans.setValue((ConstSFVec3f)e.getValue());
 }
 }

B.5.3 Sending eventOuts or eventIns

Assume that the thread which executes processEvent() (or processEvents()) is called 'main' thread and any other
thread spawned by the Script, except for the 'main' thread, is called 'sub' thread. Sending eventOuts/eventIns in the
'main' thread follows the model described in 4.10.3, Execution model, and sending eventOuts/eventIns in any 'sub'
thread follows the model described in 4.12.6, Asynchronous scripts.

In the ’main’ thread: Calling one of the setValue(), set1Value, addValue(), insertValue(), clear() or delete()
methods on an eventOut/eventIn sends that event at that time. Calling the methods multiple times during one
execution of the thread still only sends one event which corresponds to the first call of the method. All other calls
are ignored. The event is assigned the same timestamp as the initial event which caused the main thread to execute.

In the ’sub’ thread: Calling one of the setValue(), set1Value, addValue(), insertValue(), clear() or delete() method
on an eventOut/eventIn sends that event at that time. Calling the methods multiple times during one execution of the
thread sends one event per call of the method. The browser assigns the timestamp to the event.

Note: sending eventIns is ordinarily performed by the VRML scene, not by Java platform scripts. Exceptions are
possible as specified in B.5.1, Accessing fields, eventIns and eventOuts of the script.

B.6 Exposed classes and methods for nodes and fields

B.6.1 Introduction

Java platform classes for VRML are defined in the packages: vrml, vrml.node and vrml.field.

The Field class extends the Java platform's Object class by default; thus, Field has the full functionality of the Object
class, including the getClass() method. The rest of the package defines a "Const" read-only class for each VRML
field type, with a getValue() method for each class; and another read/write class for each VRML field type, with
both getValue() and setValue() methods for each class. A getValue() method converts a VRML type value into a
Java platform type value. A setValue() method converts a Java platform type value into a VRML type value and sets
it to the VRML field.

Some methods are listed as "throws exception," meaning that errors are possible. It may be necessary to write
exception handlers (using the Java platform's catch() method) when those methods are used. Any method not listed
as "throws exception" is guaranteed to generate no exceptions. Each method that throws an exception includes a
prototype showing which exception(s) can be thrown.

B.6.2 Field class and ConstField class

All VRML data types have equivalent Java platform classes. The Field class is the root of all field types.

 public abstract class Field implements Cloneable {

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

156

 // methods
 }

This class has two types of subclasses: read-only classes and read/write classes

a. Read-only classes
These classes support the getValue() method. Some classes support additional convenience methods to get
value(s) from the object.

ConstSFBool, ConstSFColor, ConstMFColor, ConstSFFloat, ConstMFFloat, ConstSFImage,
ConstSFInt32, ConstMFInt32, ConstSFNode, ConstMFNode, ConstSFRotation, ConstMFRotation,
ConstSFString, ConstMFString, ConstSFVec2f, ConstMFVec2f, ConstSFVec3f, ConstMFVec3f,
ConstSFTime, ConstMFTime

b. Read/write classes
These classes support both getValue() and setValue() methods. If the class name is prefixed with MF
(meaning that it is a multiple valued field class), the class also supports the set1Value(), addValue() and
insertValue() methods. Some classes support additional convenience methods to get and set value(s) from
the object.

SFBool, SFColor, MFColor, SFFloat, MFFloat, SFImage, SFInt32, MFInt32, SFNode, MFNode,
SFRotation, MFRotation, SFString, MFString, SFVec2f, MFVec2f, SFVec3f, MFVec3f, SFTime, MFTime

The VRML Field class and its subclasses have several methods to get and set value(s): getSize(), getValue(),
get1Value(), setValue(), set1Value(), addValue(), insertValue(), clear(), delete() and toString(). In these methods,
getSize(), get1Value(), set1Value(), addValue(), insertValue(), clear() and delete() are only available for multiple
value field classes (MF classes).

c. getSize()
is the method to return the number of elements of each multiple value field class (MF class).

d. getValue()
is the method to convert a VRML type value into a Java platform type value and return it.

e. get1Value(int index)
is the method to convert a single VRML type value (index-th element of an array) and return it as a single
Java platform type value. The index of the first element is 0. Attempting to get an element beyond the
length of the element array throws an exception (ArrayIndexOutOfBoundsException).

f. setValue(value)
is the method to convert a Java platform type value into a VRML type value and copy it to the target object.

g. set1Value(int index, value)
is the method to convert from a Java platform type value to a VRML type value and copy it to the index-th
element of the target object. The index of the first element is 0. Attempting to set an element beyond the
length of the element array throws an exception (ArrayIndexOutOfBoundsException).

h. addValue(value)
is the method to convert from a Java platform type value to a VRML type value and append it to the target
object, thus adding an element.

i. insertValue(int index, value)
is the method to convert from a Java platform type value to a VRML type value and insert it as a new
element at the index-th position, thus adding an element. The index of the first element is 0. Attempting to
insert the element beyond the length of the element array throws an exception
(ArrayIndexOutOfBoundsException).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

157

j. clear()
is the method to clear all elements in the target object so that it has no more elements in it.

k. delete(int index)
is the method to delete the index-th element from the target object, thus decreasing the length of the
element array by one. The index of the first element is 0. Attempting to delete the element beyond the
length of the element array throws an exception (ArrayIndexOutOfBoundsException).

l. toString()
is the method to return a String containing the VRML utf8 encoded value (or values) of the equivalent of
the field. In the case of the SFNode(ConstSFNode) and MFNode (ConstMFNode),

• SFNode(ConstSFNode): the method returns the VRML utf8 string that, if parsed as the value of
an SFNode field, would produce this node. If the browser is unable to reproduce this node, the
name of the node followed by the open brace and close brace shall be returned. Additional
information may be included as one or more VRML comment strings.

• MFNode(ConstMFNode): the method returns the VRML utf8 string that, if parsed as the value of
a MFNode field, would produce this array of nodes. If the browser is unable to reproduce this
node, the name of the nodes followed by the open brace and close brace shall be returned.
Additional information may be included as one or more VRML comment strings

See also B.5.1, Accessing fields, eventIns and eventOuts of the Script, B.6.3, Array handling, B.6.4, Node class, and
B.9.2.1, vrml package, for each class' methods definition.

B.6.3 Array handling

B.6.3.1 Format

Some constructors and other methods of the field classes take an array as an argument.

a. A single-dimensional array

Some constructors and other methods of the following classes take a single-dimensional array as an
argument. The array is treated as follows:

1. ConstSFColor, ConstMFColor, SFColor and MFColor

float colors[]

colors[] consists of a set of three float-values (representing red, green and blue).

2. ConstSFRotation, ConstMFRotation, SFRotation and MFRotation

float rotations[]

rotations[] consists of a set of four float-values (representing axisX, axisY, axisZ and angle).

3. ConstSFVec2f, ConstMFVec2f, SFVec2f and MFVec2f

float vec2s[]

vec2s[] consists of a set of two float-values (representing x and y).

4. ConstSFVec3f, ConstMFVec3f, SFVec3f and MFVec3f

float vec3s[]

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

158

vec3s[] consists of a set of three float-values (representing x, y and z).

5. ConstSFImage and SFImage

byte pixels[]

pixels[] consists of 2-dimensional pixel image. The ordering of the individual components for an
individual pixel within the array of bytes will be as follows:

 # Comp. byte[i] byte[i + 1] byte[i + 2] byte[i + 3]
 ------- ---------- ---------- ----------- -----------
 1 intensity1 intensity2 intensity3 intensity4
 2 intensity1 alpha1 intensity2 alpha2
 3 red1 green1 blue1 red2
 4 red1 green1 blue1 alpha1

The order of pixels in the array are to follow that defined in 5.5, SFImage. byte 0 is pixel 0,
starting from the bottom left corner.

b. A single integer and a single-dimensional array

Some constructors and other methods take a single integer value (called size) and a single-dimensional
array as arguments: for example, MFFloat(int size, float values[]). The size parameter specifies the number
of valid elements in the array, from 0-th element to (size - 1)-th element, all other values are ignored. This
means that the method may be passed an array of length size or larger. The same rule for a single-
dimensional array is applied to the valid elements.

c. An array of arrays

Some constructors and other methods alternatively take an array of arrays as an argument. The array is
treated as follows:

1. ConstMFColor and MFColor

float colors[][]

colors[][] consists of an array of sets of three float-values (representing red, green and blue).

2. ConstMFRotation and MFRotation

float rotations[][]

rotations[][] consists of an array of sets of four float-values (representing axisX, axisY, axisZ and
angle).

3. ConstMFVec2f and MFVec2f

float vec2s[][]

vec2s[][] consists of an array of sets of two float-values (representing x and y).

4. ConstMFVec3f and MFVec3f

float vec3s[][]

vec3s[][] consists of an array of sets of three float-values (representing x, y and z).

B.6.3.2 Constructors and methods

The following describes how arrays are interpreted in detail for each constructor and method.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

159

Suppose NA represents the number of elements in the array specified as an argument of some constructors and other
methods, and NT represents the number of elements which the target object requires or has. For example, if the
target object is SFColor, it requires exactly 3 float values.

In the following description, suppose SF* represents subclasses of Field class, ConstSF* represents subclasses of
ConstField class, MF* represents subclasses of MField class and ConstMF* represents subclasses of ConstMField
class.

a. A single-dimensional array

In the following description, if the target object is:

• ConstSFColor and SFColor, NT is exactly 3

• ConstMFColor and MFColor, NT is a multiple of 3, and NA is rounded down to a multiple of 3

• ConstSFRotation and SFRotation, NT is exactly 4

• ConstMFRotation and MFRotation, NT is a multiple of 4, and NA is rounded down to a multiple of
4

• ConstSFVec2f and SFVec2f, NT is exactly 2

• ConstMFVec2f and MFVec2f, NT is a multiple of 2, and NA is rounded down to a multiple of 2

• ConstSFVec3f and SFVec3f, NT is exactly 3

• ConstMFVec3f and MFVec3f, NT is a multiple of 3, and NA is rounded down to a multiple of 3

• ConstSFImage and SFImage, NT is exactly width*height*components (width, height and number
of components in the image, see 5.5, SFImage)

1. For ConstSF* objects and SF* objects

For all constructors and methods which take a single-dimensional array as an argument, the
following rules are applied. NA shall be larger than or equal to NT. If NA is larger than NT, the
elements from the 0-th to the (NT - 1)-th element are used and remaining elements are ignored.
Otherwise, an exception(ArrayIndexOutOfBoundsException) is thrown.

For example, when the array is used as an argument of the setValue() for SFColor, the array shall
contain at least 3 float values. If the array contains more than 3 float values, the first 3 values are
used.

2. For ConstMF* objects and MF* objects

• For constructor.

The same rule for ConstSF* and SF* objects is applied.

For example, when the array is used as an argument of the constructor for MFColor, the
array shall contain at least 3 float values. If the array contains 3N, 3N +1 or 3N + 2 float
values, the first 3N values are used.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

160

• For setValue() method.

If NT is smaller than or equal to NA, NT is increased to NA and then all elements of the
array are copied into the target object. If NT is larger than NA, NT is decreased to NA and
then all elements of the array are copied into the target object.

• For getValue() method.

If NT is smaller than or equal to NA, all elements of the target object are copied into the
first NT elemets of the array. If NT is larger than NA, an exception
(ArrayIndexOutOfBoundsException) is thrown.

• For set1Value() method.

The target element (the index-th element) is treated as an SF* object. So the same rule for
ConstSF* and SF* objects is applied.

• For get1Value() method.

The target element (the index-th element) is treated as an SF* (or ConstSF*) object. So
the same rule for ConstSF* and SF* objects is applied.

• For addValue() and insertValue() method.

The corresponding SF* object is created using the argument, and then added to the target
object or inserted into the target object.

b. A single integer and a single-dimensional array

For all constructors and methods which take a single integer value (called size) and a single-dimensional
array as arguments, for example, MFFloat(int size, float values[]), the following rule is applied.

The size parameter specifies the number of valid elements in the array from the 0-th element to the (size -
 1)-th element; all other values are ignored. This means that the method may be passed an array of length
size or larger.

The valid elements are copied to a new array and the rules for a single-dimensional array are applied to the
new array for all methods.

c. An array of arrays

This argument is used only for MF* objects and ConstMF* objects. In the following case, suppose NA is
the number of arrays (for example float f[4][3], NA is 4) specified as an argument of some constructors and
other methods and NT is the return value of getSize() method of each object.

• For constructor.
The object which has NA elements is created.

• For setValue() method.
If NT is smaller than or equal to NA, NT is increased to NA and then all elements of the array are
copied into the target object. If NT is larger than NA, NT is decreased to NA and then all elements
of the array are copied into the target object.

• For getValue() method.
If NT is smaller than or equal to NA, all elements of the target object are copied into the array. If
NT is larger than NA, an exception(ArrayIndexOutOfBoundsException) is thrown.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

161

B.6.4 Node class

The Node class has several methods:

a. String getType()
is the method to return the type of the node.

b. ConstField getEventOut(String eventOutName)
is the method to get the reference to the node's eventOut whose name is eventOutName. The return value
can be converted to the appropriate subclass of the Field class, (see B.6.2, Field class and ConstField class).

c. Field getEventIn(String eventInName)
is the method to get the reference to the node's eventIn whose name is eventInName. The return value can
be converted to the appropriate subclass of the Field class, (see B.6.2, Field class and ConstField class).
EventIn is a write-only field. When the getValue() method is invoked on a Field object obtained by the
getEventIn() method, the return value is unspecified.

d. Field getExposedField(String exposedFieldName)
is the method to get the reference to the node's exposedField whose name is exposedFieldName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField class).

e. Browser getBrowser()
is the method to get the browser object that this node is contained in (see B.6.5, Browser class).

f. String toString()
is the same as the toString() method of SFNode (ConstSFNode).

When the setValue(), set1Value(), addValue(), insertValue(), delete() or clear() methods are invoked on a Field
object obtained by the getExposedField() method, the call generates an eventOut in the VRML scene (see also
B.6.2, Field class and ConstField class, and B.6.3, Array handling). The effect of this eventOut is specified by the
associated Route(s) in the VRML scene. In the case of the set1Value(), addValue(), insertValue() or delete()
methods, all elements of the VRML node's exposedField are retrieved, then the value specified as an argument is
set, added, inserted or deleted (as appropriate) to/from the elements, then stored as the elements in the corresponding
VRML node's exposedField, and then the eventOut is sent. In the case of the clear() method, all elements of VRML
node's exposedField are cleared and an eventOut with zero elements is sent (see the definition of the clear()
method).

When the setValue() or clear() methods are invoked on a Field object obtained by the getEventIn() method, the call
generates an eventIn in the VRML scene. When the set1Value(), addValue(), insertValue() or delete() methods are
invoked on the Field object, an exception (InvalidFieldChangeException) is thrown.

B.6.5 Browser class

This section lists the public Java platform interfaces to the Browser class, which allows scripts to get and set
browser information. For descriptions of the following methods, see 4.12.10, Browser script interface. Table B.1
lists the Browser class methods.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

162

Table B.1 -- Browser class methods

Return value Method name

String getName()

String getVersion()

float getCurrentSpeed()

float getCurrentFrameRate()

String getWorldURL()

void replaceWorld(BaseNode[] nodes)

BaseNode[] createVrmlFromString(String vrmlSyntax)

void
createVrmlFromURL(String[] url, BaseNode node,
 String event)

void
addRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn)

void
deleteRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn)

void loadURL(String[] url, String[] parameter)

void setDescription(String description)

See B.9.2.1, vrml package, for each method's definition.

Table B.2 contains conversions from the types used in Browser class to Java platform types.

Table B.2 -- VRML and Java platform types

VRML type Java platform type

SFString String

SFFloat float

MFString String[]

MFNode BaseNode[]

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

163

When a relative URL is specified as an argument of the loadURL() and createVrmlFromURL() method, the path is
relative to the script file containing these methods (see 4.5.3, Relative URLs).

B.6.6 User-defined classes and packages

The Java platform classes defined by a user can be used in the Java program. They are first searched from the
directories specified in the CLASSPATH environment variable and then the directory where the Java program's
class file is placed.

If the Java platform class is in a package, this package is searched from the directories specified in the
CLASSPATH environment variable and then the directory where the Java program's class file is placed.

B.6.7 Standard Java platform packages

Java programs have access to the full set of classes available in java.*. All parts of the Java platform are required
to work as "normal" for the Java platform. So all methods specified in this annex are required to be thread-safe. The
security model is browser specific.

B.7 Exceptions
Java platform methods may throw the following exceptions:

a. InvalidFieldException
is thrown at the time getField() is executed and the field name is invalid.

b. InvalidEventInException
is thrown at the time getEventIn() is executed and the eventIn name is invalid.

c. InvalidEventOutException
is thrown at the time getEventOut() is executed and the eventOut name is invalid.

d. InvalidExposedFieldException
is thrown at the time getExposedField() is executed and the exposedField name is invalid.

e. InvalidVRMLSyntaxException
is thrown at the time createVrmlFromString(), createVrmlFromURL() or loadURL() is executed and the
vrml syntax is invalid.

f. InvalidRouteException
is thrown at the time addRoute() or deleteRoute() is executed and one or more of the arguments is invalid.

g. InvalidFieldChangeException
may be thrown as a result of all sorts of illegal field changes, for example:

1. Adding a node from one World as the child of a node in another World.

2. Creating a circularity in a scene graph.

3. Setting an invalid string on enumerated fields, such as the fogType field of the Fog node.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

164

4. Calling the set1Value(), addValue() or delete() on a Field object obtained by the getEventIn()
method.

h. ArrayIndexOutOfBoundsException
is generated at the time getValue(), set1Value(), insertValue() or delete() is executed and the index is out of
bound (see B.6.2, Field class and ConstField class). This is the standard exception defined in the Java
platform Array class.

i. IllegalArgumentException
is generated at the time loadURL() or createVrmlFromURL() is executed and an error is occurred before
retrieving the content of the url (see B.6.5, Browser class). This is the standard exception defined by the
Java platform.

If exceptions are not caught by authors, a browser's behaviour is unspecified (see B.10, Example of exception class).

B.8 Examples
The following is an example of a Script node which determines whether a given color contains a lot of red. The
Script node exposes a field, an eventIn, and an eventOut:

 Script {
 field SFColor currentColor 0 0 0
 eventIn SFColor colorIn
 eventOut SFBool isRed
 url "Example4.class"
 }

The following is the source code for the Example4.java file that gets called every time an eventIn is routed to the
above Script node:

Example4.java:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class Example4 extends Script {
 // Declare field(s)
 private SFColor currentColor;

 // Declare eventOut
 private SFBool isRed;

 // buffer for SFColor.getValue().
 private float colorBuff[] = new float[3];

 public void initialize(){
 currentColor = (SFColor) getField("currentColor");
 isRed = (SFBool) getEventOut("isRed");
 }

 public void processEvent(Event e){
 // This method is called when a colorIn event is received
 currentColor.setValue((ConstSFColor)e.getValue());
 }

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

165

 public void eventsProcessed(){
 currentColor.getValue(colorBuff);
 if (colorBuff[0] >= 0.5) // if red is at or above 50%
 isRed.setValue(true);
 }
}

Details on when the methods defined in Example4.java are called may be found in 4.10.3, Execution model.

Example5: createVrmlFromUrl()

 Script {
 url "Example5.class"
 field MFString target_url "foo.wrl"
 eventIn MFNode nodesLoaded
 eventIn SFBool trigger_event
 }

Example5.java:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example5 extends Script {
 private MFString target_url; // field
 private Browser browser;

 public void initialize(){
 target_url = (MFString)getField("target_url");
 browser = this.getBrowser();
 }

 public void processEvent(Event e){
 if(e.getName().equals("trigger_event")){
 // do something and then fetch values
 String[] urls;
 urls = new String[target_url.getSize()];
 target_url.getValue(urls);
 browser.createVrmlFromURL(urls, this, "nodesLoaded");
 }
 if(e.getName().equals("nodesLoaded")){
 // do something
 }
 }
 }

Example6: addRoute()

 DEF TS TouchSensor {}
 Script {
 url "Example6.class"
 field SFNode fromNode USE TS
 eventIn SFBool clicked
 eventIn SFBool trigger_event
 }

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

166

Example6.java:

 import vrml.*;
 import vrml.field.*;
 import vrml.node.*;

 public class Example6 extends Script {

 private SFNode fromNode;
 private Browser browser;

 public void initialize(){
 fromNode = (SFNode) getField("fromNode");
 browser = this.getBrowser();
 }

 public void processEvent(Event e){
 if(e.getName().equals("trigger_event")){
 // do something and then add routing
 browser.addRoute(fromNode.getValue(), "isActive", this, "clicked");
 }
 if(e.getName().equals("clicked")){
 // do something
 }
 }

 }

B.9 Class definitions

B.9.1 Class hierarchy

The classes are divided into three packages: vrml, vrml.field and vrml.node.

java.lang.Object
 |
 +- vrml.Event
 +- vrml.Browser
 +- vrml.Field
 | +- vrml.field.SFBool
 | +- vrml.field.SFColor
 | +- vrml.field.SFFloat
 | +- vrml.field.SFImage
 | +- vrml.field.SFInt32
 | +- vrml.field.SFNode
 | +- vrml.field.SFRotation
 | +- vrml.field.SFString
 | +- vrml.field.SFTime
 | +- vrml.field.SFVec2f
 | +- vrml.field.SFVec3f
 | |
 | +- vrml.MField
 | | +- vrml.field.MFColor
 | | +- vrml.field.MFFloat
 | | +- vrml.field.MFInt32
 | | +- vrml.field.MFNode

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

167

 | | +- vrml.field.MFRotation
 | | +- vrml.field.MFString
 | | +- vrml.field.MFTime
 | | +- vrml.field.MFVec2f
 | | +- vrml.field.MFVec3f
 | |
 | +- vrml.ConstField
 | +- vrml.field.ConstSFBool
 | +- vrml.field.ConstSFColor
 | +- vrml.field.ConstSFFloat
 | +- vrml.field.ConstSFImage
 | +- vrml.field.ConstSFInt32
 | +- vrml.field.ConstSFNode
 | +- vrml.field.ConstSFRotation
 | +- vrml.field.ConstSFString
 | +- vrml.field.ConstSFTime
 | +- vrml.field.ConstSFVec2f
 | +- vrml.field.ConstSFVec3f
 | |
 | +- vrml.ConstMField
 | +- vrml.field.ConstMFColor
 | +- vrml.field.ConstMFFloat
 | +- vrml.field.ConstMFInt32
 | +- vrml.field.ConstMFNode
 | +- vrml.field.ConstMFRotation
 | +- vrml.field.ConstMFString
 | +- vrml.field.ConstMFTime
 | +- vrml.field.ConstMFVec2f
 | +- vrml.field.ConstMFVec3f
 |
 +- vrml.BaseNode
 +- vrml.node.Node
 +- vrml.node.Script

java.lang.Exception
 |
 +- java.lang.RuntimeException
 | +- java.lang.IllegalArgumentException
 | +- vrml.InvalidEventInException
 | +- vrml.InvalidEventOutException
 | +- vrml.InvalidExposedFieldException
 | +- vrml.InvalidFieldChangeException
 | +- vrml.InvalidFieldException
 | +- vrml.InvalidRouteException
 |
 +- vrml.InvalidVRMLSyntaxException

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

168

B.9.2 VRML packages

B.9.2.1 vrml package

package vrml;

public class Event implements Cloneable
{
 public String getName();
 public double getTimeStamp();
 public ConstField getValue();
 public Object clone();

 public String toString(); // This overrides a method in Object
}

public class Browser
{
 private Browser();
 public String toString(); // This overrides a method in Object

 // Browser interface
 public String getName();
 public String getVersion();

 public float getCurrentSpeed();

 public float getCurrentFrameRate();

 public String getWorldURL();
 public void replaceWorld(BaseNode[] nodes);

 public BaseNode[] createVrmlFromString(String vrmlSyntax)
 throws InvalidVRMLSyntaxException;

 public void createVrmlFromURL(String[] url, BaseNode node, String event)
 throws InvalidVRMLSyntaxException;

 public void addRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn);

 public void deleteRoute(BaseNode fromNode, String fromEventOut,
 BaseNode toNode, String toEventIn);

 public void loadURL(String[] url, String[] parameter)
 throws InvalidVRMLSyntaxException;

 public void setDescription(String description);
}

public abstract class Field implements Cloneable
{
 public Object clone();
}

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

169

public abstract class MField extends Field
{
 public abstract int getSize();
 public abstract void clear();
 public abstract void delete(int index);
}

public abstract class ConstField extends Field
{
}

public abstract class ConstMField extends ConstField
{
 public abstract int getSize();
}

//
// This is the general BaseNode class
//
public abstract class BaseNode
{
 // Returns the type of the node. If the node is a prototype
 // it returns the name of the prototype.
 public String getType();

 // Get the Browser that this node is contained in.
 public Browser getBrowser();
}

B.9.2.2 vrml.field package

package vrml.field;

public class SFBool extends Field
{
 public SFBool();
 public SFBool(boolean value);

 public boolean getValue();

 public void setValue(boolean b);
 public void setValue(ConstSFBool b);
 public void setValue(SFBool b);

 public String toString(); // This overrides a method in Object
}

public class SFColor extends Field
{
 public SFColor();
 public SFColor(float red, float green, float blue);

 public void getValue(float colors[]);
 public float getRed();
 public float getGreen();

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

170

 public float getBlue();

 public void setValue(float colors[]);
 public void setValue(float red, float green, float blue);
 public void setValue(ConstSFColor color);
 public void setValue(SFColor color);

 public String toString(); // This overrides a method in Object
}

public class SFFloat extends Field
{
 public SFFloat();
 public SFFloat(float f);

 public float getValue();

 public void setValue(float f);
 public void setValue(ConstSFFloat f);
 public void setValue(SFFloat f);

 public String toString(); // This overrides a method in Object
}

public class SFImage extends Field
{
 public SFImage();
 public SFImage(int width, int height, int components, byte pixels[]);

 public int getWidth();
 public int getHeight();
 public int getComponents();
 public void getPixels(byte pixels[]);

 public void setValue(int width, int height, int components,
 byte pixels[]);
 public void setValue(ConstSFImage image);
 public void setValue(SFImage image);

 public String toString(); // This overrides a method in Object
}

public class SFInt32 extends Field
{
 public SFInt32();
 public SFInt32(int value);

 public int getValue();

 public void setValue(int i);
 public void setValue(ConstSFInt32 i);
 public void setValue(SFInt32 i);

 public String toString(); // This overrides a method in Object
}

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

171

public class SFNode extends Field
{
 public SFNode();
 public SFNode(BaseNode node);

 public BaseNode getValue();

 public void setValue(BaseNode node);
 public void setValue(ConstSFNode node);
 public void setValue(SFNode node);

 public String toString(); // This overrides a method in Object
}

public class SFRotation extends Field
{
 public SFRotation();
 public SFRotation(float axisX, float axisY, float axisZ, float angle);

 public void getValue(float rotations[]);

 public void setValue(float rotations[]);
 public void setValue(float axisX, float axisY, float axisZ,
 float angle);
 public void setValue(ConstSFRotation rotation);
 public void setValue(SFRotation rotation);

 public String toString(); // This overrides a method in Object
}

public class SFString extends Field
{
 public SFString();
 public SFString(String s);

 public String getValue();

 public void setValue(String s);
 public void setValue(ConstSFString s);
 public void setValue(SFString s);

 public String toString(); // This overrides a method in Object
}

public class SFTime extends Field
{
 public SFTime();
 public SFTime(double time);

 public double getValue();

 public void setValue(double time);
 public void setValue(ConstSFTime time);
 public void setValue(SFTime time);

 public String toString(); // This overrides a method in Object
}

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

172

public class SFVec2f extends Field
{
 public SFVec2f();
 public SFVec2f(float x, float y);

 public void getValue(float vec2s[]);
 public float getX();
 public float getY();

 public void setValue(float vec2s[]);
 public void setValue(float x, float y);
 public void setValue(ConstSFVec2f vec);
 public void setValue(SFVec2f vec);

 public String toString(); // This overrides a method in Object
}

public class SFVec3f extends Field
{
 public SFVec3f();
 public SFVec3f(float x, float y, float z);

 public void getValue(float vec3s[]);
 public float getX();
 public float getY();
 public float getZ();

 public void setValue(float vec3s[]);
 public void setValue(float x, float y, float z);
 public void setValue(ConstSFVec3f vec);
 public void setValue(SFVec3f vec);

 public String toString(); // This overrides a method in Object
}

public class MFColor extends MField
{
 public MFColor();
 public MFColor(float colors[][]);
 public MFColor(float colors[]);
 public MFColor(int size, float colors[]);

 public void getValue(float colors[][]);
 public void getValue(float colors[]);

 public void get1Value(int index, float colors[]);
 public void get1Value(int index, SFColor color);

 public void setValue(float colors[][]);
 public void setValue(float colors[]);
 public void setValue(int size, float colors[]);
 /**
 color[0] ... color[size - 1] are used as color data
 in the way that color[0], color[1], and color[2]
 represent the first color. The number of colors
 is defined as "size / 3".

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

173

 ***/
 public void setValue(MFColor colors);
 public void setValue(ConstMFColor colors);

 public void set1Value(int index, ConstSFColor color);
 public void set1Value(int index, SFColor color);
 public void set1Value(int index, float red, float green, float blue);

 public void addValue(ConstSFColor color);
 public void addValue(SFColor color);
 public void addValue(float red, float green, float blue);

 public void insertValue(int index, ConstSFColor color);
 public void insertValue(int index, SFColor color);
 public void insertValue(int index, float red, float green, float blue);

 public String toString(); // This overrides a method in Object
}

public class MFFloat extends MField
{
 public MFFloat();
 public MFFloat(int size, float values[]);
 public MFFloat(float values[]);

 public void getValue(float values[]);

 public float get1Value(int index);

 public void setValue(float values[]);
 public void setValue(int size, float values[]);
 public void setValue(MFFloat value);
 public void setValue(ConstMFFloat value);

 public void set1Value(int index, float f);
 public void set1Value(int index, ConstSFFloat f);
 public void set1Value(int index, SFFloat f);

 public void addValue(float f);
 public void addValue(ConstSFFloat f);
 public void addValue(SFFloat f);

 public void insertValue(int index, float f);
 public void insertValue(int index, ConstSFFloat f);
 public void insertValue(int index, SFFloat f);

 public String toString(); // This overrides a method in Object
}

public class MFInt32 extends MField
{
 public MFInt32();
 public MFInt32(int size, int values[]);
 public MFInt32(int values[]);

 public void getValue(int values[]);

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

174

 public int get1Value(int index);

 public void setValue(int values[]);
 public void setValue(int size, int values[]);
 public void setValue(MFInt32 value);
 public void setValue(ConstMFInt32 value);

 public void set1Value(int index, int i);
 public void set1Value(int index, ConstSFInt32 i);
 public void set1Value(int index, SFInt32 i);

 public void addValue(int i);
 public void addValue(ConstSFInt32 i);
 public void addValue(SFInt32 i);

 public void insertValue(int index, int i);
 public void insertValue(int index, ConstSFInt32 i);
 public void insertValue(int index, SFInt32 i);

 public String toString(); // This overrides a method in Object
}

public class MFNode extends MField
{
 public MFNode();
 public MFNode(int size, BaseNode node[]);
 public MFNode(BaseNode node[]);

 public void getValue(BaseNode node[]);

 public BaseNode get1Value(int index);

 public void setValue(BaseNode node[]);
 public void setValue(int size, BaseNode node[]);
 public void setValue(MFNode node);
 public void setValue(ConstMFNode node);

 public void set1Value(int index, BaseNode node);
 public void set1Value(int index, ConstSFNode node);
 public void set1Value(int index, SFNode node);

 public void addValue(BaseNode node);
 public void addValue(ConstSFNode node);
 public void addValue(SFNode node);

 public void insertValue(int index, BaseNode node);
 public void insertValue(int index, ConstSFNode node);
 public void insertValue(int index, SFNode node);

 public String toString(); // This overrides a method in Object
}

public class MFRotation extends MField
{
 public MFRotation();
 public MFRotation(float rotations[][]);

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

175

 public MFRotation(float rotations[]);
 public MFRotation(int size, float rotations[]);

 public void getValue(float rotations[][]);
 public void getValue(float rotations[]);

 public void get1Value(int index, float rotations[]);
 public void get1Value(int index, SFRotation rotation);

 public void setValue(float rotations[][]);
 public void setValue(float rotations[]);
 public void setValue(int size, float rotations[]);
 public void setValue(MFRotation rotations);
 public void setValue(ConstMFRotation rotations);

 public void set1Value(int index, ConstSFRotation rotation);
 public void set1Value(int index, SFRotation rotation);
 public void set1Value(int index, float axisX, float axisY, float axisZ,
float angle);

 public void addValue(ConstSFRotation rotation);
 public void addValue(SFRotation rotation);
 public void addValue(float axisX, float axisY, float axisZ, float angle);

 public void insertValue(int index, ConstSFRotation rotation);
 public void insertValue(int index, SFRotation rotation);
 public void insertValue(int index, float axisX, float axisY, float axisZ,
 float angle);

 public String toString(); // This overrides a method in Object
}

public class MFString extends MField
{
 public MFString();
 public MFString(int size, String s[]);
 public MFString(String s[]);

 public void getValue(String s[]);

 public String get1Value(int index);

 public void setValue(String s[]);
 public void setValue(int size, String s[]);
 public void setValue(MFString s);
 public void setValue(ConstMFString s);

 public void set1Value(int index, String s);
 public void set1Value(int index, ConstSFString s);
 public void set1Value(int index, SFString s);

 public void addValue(String s);
 public void addValue(ConstSFString s);
 public void addValue(SFString s);

 public void insertValue(int index, String s);
 public void insertValue(int index, ConstSFString s);

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

176

 public void insertValue(int index, SFString s);

 public String toString(); // This overrides a method in Object
}

public class MFTime extends MField
{
 public MFTime();
 public MFTime(int size, double times[]);
 public MFTime(double times[]);

 public void getValue(double times[]);

 public double get1Value(int index);

 public void setValue(double times[]);
 public void setValue(int size, double times[]);
 public void setValue(MFTime times);
 public void setValue(ConstMFTime times);

 public void set1Value(int index, double time);
 public void set1Value(int index, ConstSFTime time);
 public void set1Value(int index, SFTime time);

 public void addValue(double time);
 public void addValue(ConstSFTime time);
 public void addValue(SFTime time);

 public void insertValue(int index, double time);
 public void insertValue(int index, ConstSFTime time);
 public void insertValue(int index, SFTime time);

 public String toString(); // This overrides a method in Object
}

public class MFVec2f extends MField
{
 public MFVec2f();
 public MFVec2f(float vec2s[][]);
 public MFVec2f(float vec2s[]);
 public MFVec2f(int size, float vec2s[]);

 public void getValue(float vec2s[][]);
 public void getValue(float vec2s[]);

 public void get1Value(int index, float vec2s[]);
 public void get1Value(int index, SFVec2f vec);

 public void setValue(float vec2s[][]);
 public void setValue(float vec2s[]);
 public void setValue(int size, float vec2s[]);
 public void setValue(MFVec2f vecs);
 public void setValue(ConstMFVec2f vecs);

 public void set1Value(int index, float x, float y);
 public void set1Value(int index, ConstSFVec2f vec);
 public void set1Value(int index, SFVec2f vec);

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

177

 public void addValue(float x, float y);
 public void addValue(ConstSFVec2f vec);
 public void addValue(SFVec2f vec);

 public void insertValue(int index, float x, float y);
 public void insertValue(int index, ConstSFVec2f vec);
 public void insertValue(int index, SFVec2f vec);

 public String toString(); // This overrides a method in Object
}

public class MFVec3f extends MField
{
 public MFVec3f();
 public MFVec3f(float vec3s[][]);
 public MFVec3f(float vec3s[]);
 public MFVec3f(int size, float vec3s[]);

 public void getValue(float vec3s[][]);
 public void getValue(float vec3s[]);

 public void get1Value(int index, float vec3s[]);
 public void get1Value(int index, SFVec3f vec);

 public void setValue(float vec3s[][]);
 public void setValue(float vec3s[]);
 public void setValue(int size, float vec3s[]);
 public void setValue(MFVec3f vecs);
 public void setValue(ConstMFVec3f vecs);

 public void set1Value(int index, float x, float y, float z);
 public void set1Value(int index, ConstSFVec3f vec);
 public void set1Value(int index, SFVec3f vec);

 public void addValue(float x, float y, float z);
 public void addValue(ConstSFVec3f vec);
 public void addValue(SFVec3f vec);

 public void insertValue(int index, float x, float y, float z);
 public void insertValue(int index, ConstSFVec3f vec);
 public void insertValue(int index, SFVec3f vec);

 public String toString(); // This overrides a method in Object
}

public class ConstSFBool extends ConstField
{
 public ConstSFBool(boolean value);

 public boolean getValue();

 public String toString(); // This overrides a method in Object
}

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

178

public class ConstSFColor extends ConstField
{
 public ConstSFColor(float red, float green, float blue);

 public void getValue(float colors[]);
 public float getRed();
 public float getGreen();
 public float getBlue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFFloat extends ConstField
{
 public ConstSFFloat(float value);

 public float getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFImage extends ConstField
{
 public ConstSFImage(int width, int height, int components, byte pixels[]);

 public int getWidth();
 public int getHeight();
 public int getComponents();
 public void getPixels(byte pixels[]);

 public String toString(); // This overrides a method in Object
}

public class ConstSFInt32 extends ConstField
{
 public ConstSFInt32(int value);

 public int getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFNode extends ConstField
{
 public ConstSFNode(BaseNode node);

 public BaseNode getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFRotation extends ConstField
{
 public ConstSFRotation(float axisX, float axisY, float axisZ, float angle);

 public void getValue(float rotations[]);

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

179

 public String toString(); // This overrides a method in Object
}

public class ConstSFString extends ConstField
{
 public ConstSFString(String value);

 public String getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFTime extends ConstField
{
 public ConstSFTime(double time);

 public double getValue();

 public String toString(); // This overrides a method in Object
}

public class ConstSFVec2f extends ConstField
{
 public ConstSFVec2f(float x, float y);

 public void getValue(float vec2s[]);
 public float getX();
 public float getY();

 public String toString(); // This overrides a method in Object
}

public class ConstSFVec3f extends ConstField
{
 public ConstSFVec3f(float x, float y, float z);

 public void getValue(float vec3s[]);
 public float getX();
 public float getY();
 public float getZ();

 public String toString(); // This overrides a method in Object
}

public class ConstMFColor extends ConstMField
{
 public ConstMFColor(float colors[][]);
 public ConstMFColor(float colors[]);
 public ConstMFColor(int size, float colors[]);

 public void getValue(float colors[][]);
 public void getValue(float colors[]);

 public void get1Value(int index, float colors[]);
 public void get1Value(int index, SFColor color);

 public String toString(); // This overrides a method in Object

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

180

}

public class ConstMFFloat extends ConstMField
{
 public ConstMFFloat(int size, float values[]);
 public ConstMFFloat(float values[]);

 public void getValue(float values[]);

 public float get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFInt32 extends ConstMField
{
 public ConstMFInt32(int size, int values[]);
 public ConstMFInt32(int values[]);

 public void getValue(int values[]);

 public int get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFNode extends ConstMField
{
 public ConstMFNode(int size, BaseNode node[]);
 public ConstMFNode(BaseNode node[]);

 public void getValue(BaseNode node[]);

 public BaseNode get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFRotation extends ConstMField
{
 public ConstMFRotation(float rotations[][]);
 public ConstMFRotation(float rotations[]);
 public ConstMFRotation(int size, float rotations[]);

 public void getValue(float rotations[][]);
 public void getValue(float rotations[]);

 public void get1Value(int index, float rotations[]);
 public void get1Value(int index, SFRotation rotation);

 public String toString(); // This overrides a method in Object
}

public class ConstMFString extends ConstMField
{
 public ConstMFString(int size, String s[]);
 public ConstMFString(String s[]);

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

181

 public void getValue(String values[]);

 public String get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFTime extends ConstMField
{
 public ConstMFTime(int size, double times[]);
 public ConstMFTime(double times[]);

 public void getValue(double times[]);

 public double get1Value(int index);

 public String toString(); // This overrides a method in Object
}

public class ConstMFVec2f extends ConstMField
{
 public ConstMFVec2f(float vec2s[][]);
 public ConstMFVec2f(float vec2s[]);
 public ConstMFVec2f(int size, float vec2s[]);

 public void getValue(float vec2s[][]);
 public void getValue(float vec2s[]);

 public void get1Value(int index, float vec2s[]);
 public void get1Value(int index, SFVec2f vec);

 public String toString(); // This overrides a method in Object
}

public class ConstMFVec3f extends ConstMField
{
 public ConstMFVec3f(float vec3s[][]);
 public ConstMFVec3f(float vec3s[]);
 public ConstMFVec3f(int size, float vec3s[]);

 public void getValue(float vec3s[][]);
 public void getValue(float vec3s[]);

 public void get1Value(int index, float vec3s[]);
 public void get1Value(int index, SFVec3f vec);

 public String toString(); // This overrides a method in Object
}

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

182

B.9.2.3 vrml.node package

package vrml.node;

//
// This is the general Node class
//
public abstract class Node extends BaseNode
{
 // Get an EventIn by name. Return value is write-only.
 // Throws an InvalidEventInException if eventInName isn’t a valid
 // eventIn name for a node of this type.
 public final Field getEventIn(String eventInName);

 // Get an EventOut by name. Return value is read-only.
 // Throws an InvalidEventOutException if eventOutName isn’t a valid
 // eventOut name for a node of this type.
 public final ConstField getEventOut(String eventOutName);

 // Get an exposed field by name.
 // Throws an InvalidExposedFieldException if exposedFieldName isn’t a
valid
 // exposedField name for a node of this type.
 public final Field getExposedField(String exposedFieldName);

 public String toString(); // This overrides a method in Object
}

//
// This is the general Script class, to be subclassed by all scripts.
// Note that the provided methods allow the script author to explicitly
// throw tailored exceptions in case something goes wrong in the
// script.
//
public abstract class Script extends BaseNode
{
 // This method is called before any event is generated
 public void initialize();

 // Get a Field by name.
 // Throws an InvalidFieldException if fieldName isn’t a valid
 // field name for a node of this type.
 protected final Field getField(String fieldName);

 // Get an EventOut by name.
 // Throws an InvalidEventOutException if eventOutName isn’t a valid
 // eventOut name for a node of this type.
 protected final Field getEventOut(String eventOutName);

 // Get an EventIn by name.
 // Throws an InvalidEventInException if eventInName isn’t a valid
 // eventIn name for a node of this type.
 protected final Field getEventIn(String eventInName);

 // processEvents() is called automatically when the script receives

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

183

 // some set of events. It shall not be called directly except by its
 // subclass.
 // count indicates the number of events delivered.
 public void processEvents(int count, Event events[]);

 // processEvent() is called automatically when the script receives
 // an event.
 public void processEvent(Event event);

 // eventsProcessed() is called after every invocation of processEvents().
 public void eventsProcessed()

 // shutdown() is called when this Script node is deleted.
 public void shutdown();

 public String toString(); // This overrides a method in Object
}

B.10 Example of exception class
public class InvalidEventInException extends IllegalArgumentException

{
 /**
 * Constructs an InvalidEventInException with no detail message.
 */
 public InvalidEventInException(){
 super();
 }
 /**
 * Constructs an InvalidEventInException with the specified detail
 * message.
 * A detail message is a String that describes this particular exception.
 * @param s the detail message
 */
 public InvalidEventInException(String s){
 super(s);
 }
}

public class InvalidEventOutException extends IllegalArgumentException
{
 public InvalidEventOutException(){
 super();
 }
 public InvalidEventOutException(String s){
 super(s);
 }
}

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

184

public class InvalidExposedFieldException extends IllegalArgumentException
{
 public InvalidExposedFieldException(){
 super();
 }
 public InvalidExposedFieldException(String s){
 super(s);
 }
}

public class InvalidFieldChangeException extends IllegalArgumentException
{
 public InvalidFieldChangeException(){
 super();
 }
 public InvalidFieldChangeException(String s){
 super(s);
 }
}

public class InvalidFieldException extends IllegalArgumentException
{
 public InvalidFieldException(){
 super();
 }
 public InvalidFieldException(String s){
 super(s);
 }
}

public class InvalidRouteException extends IllegalArgumentException
{
 public InvalidRouteException(){
 super();
 }
 public InvalidRouteException(String s){
 super(s);
 }
}

public class InvalidVRMLSyntaxException extends Exception
{
 public InvalidVRMLSyntaxException(){
 super();
 }
 public InvalidVRMLSyntaxException(String s){
 super(s);
 }

 public String getMessage(); // This overrides a method in Exception
}

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

185

Annex C
(normative)

ECMAScript scripting reference

C.1 Introduction and table of contents
This annex describes the ECMAScript programming language that enables Script nodes (see 6.40, Script) to interact
with VRML scenes. See 4.12, Scripting, for a general description of scripting languages in ISO/IEC 14772. Note
that support for the ECMAScript is not required by ISO/IEC 14772, but any access of ECMAScript from within
VRML Script nodes shall conform with the requirements specified in this annex.

C.1 Introduction
C.2 Language
C.3 Supported Protocol in the Script node's url field
 C.3.1 url field
 C.3.2 File extension
 C.3.3 MIME type
C.4 eventIn handling
 C.4.1 Receiving eventIns
 C.4.2 Parameter passing and the eventIn function
 C.4.3 eventsProcessed() function
 C.4.4 initialize() function
 C.4.5 shutdown() function
C.5 Accessing fields and events
 C.5.1 Accessing fields and eventOuts of the script
 C.5.2 Accessing fields and eventOuts of other nodes
 C.5.3 Sending eventOuts
C.6 ECMAScript objects
 C.6.1 Notational conventions
 C.6.2 VRML field to ECMAScript variable conversion
 C.6.3 Browser object
 C.6.4 SFColor object
 C.6.5 SFImage object
 C.6.6 SFNode object
 C.6.7 SFRotation object
 C.6.8 SFVec2f object
 C.6.9 SFVec3f object
 C.6.10 MFColor object
 C.6.11 MFFloat object
 C.6.12 MFInt32 object
 C.6.13 MFNode object
 C.6.14 MFRotation object
 C.6.15 MFString object
 C.6.16 MFTime object
 C.6.17 MFVec2f object
 C.6.18 MFVec3f object

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

186

 C.6.19 VrmlMatrix object
C.7 Examples

C.2 Language
ECMAScript is a general purpose, cross-platform programming language that can be used with ISO/IEC 14772 to
provide scripting of events, objects, and actions. ECMAScript is fully described in 2.[ESCR]. Prior to
standardization as ECMA-262, ECMAScript was known as Netscape JavaScript. Several syntactic entities in this
annex reflect this origin.

C.3 Supported protocol in the Script node’s url field

C.3.1 url field

The url field of the Script node may contain URL references to ECMAScript code as illustrated below:

 Script { url "http://foo.com/myScript.js" }

The javascript: protocol allows the script to be placed inline as follows:

 Script { url "javascript: function foo() { ... }" }

Browsers supporting the ECMAScript scripting language shall support the javascript: protocol as well as the the
other required protocols (see 7, Conformance and minimum support requirements).

The url field may contain multiple URL's referencing either a remote file or in-line code as shown in the following
example:

 Script {
 url ["http://foo.com/myScript.js",
 "javascript: function foo() { ... }"]
 }

C.3.2 File extension

The file extension for ECMASCript source code is '.js', unless a protocol returning mime types is used (such as
HTTP). In that case, any suffix is allowed as long as the proper mime type is returned (see C.3.3, Mime type).

C.3.3 MIME type

The MIME type for ECMAScript source code is defined as follows:

 application/x-javascript

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

187

C.4 eventIn handling

C.4.1 Receiving eventIns

Events sent to the Script node are passed to the corresponding ECMAScript function in the script. The script is
specified in the url field of the Script node. The function's name is the same as the eventIn and is passed two
arguments, the event value and its timestamp (see C.4.2, Parameter passing and the eventIn function). If there is no
corresponding ECMAScript function in the script, the browser's behaviour is undefined.

For example, the following Script node has one eventIn field whose name is start:

 Script {
 eventIn SFBool start
 url "javascript: function start(value, timestamp) { ... }"
 }

In the above example, when the start eventIn is sent, the start() function is executed.

C.4.2 Parameter passing and the eventIn function

When a Script node receives an eventIn, a corresponding function in the file specified in the url field of the Script
node is called. This function has two arguments. The value of the eventIn is passed as the first argument and the
timestamp of the eventIn is passed as the second argument. The type of the value is the same as the type of the
eventIn and the type of the timestamp is SFTime. C.6.1, VRML field to ECMAScript variable conversion, provides
a description of how VRML types appear in ECMAScript. The values of the parameters have no visibility outside
the function.

C.4.3 eventsProcessed() function

Authors may define an eventsProcessed() function that is called after some set of events has been received. This
allows Script nodes that do not rely on the ordering of events received to generate fewer events than an equivalent
Script node that generates events whenever events are received (see C.4.1, Receiving eventIns).

The eventsProcessed() function takes no parameters. Events generated from it are given the timestamp of the last
event processed.

C.4.4 initialize() function

Authors may define a function named initialize() which is invoked before the browser presents the world to the user
and before any events are processed by any nodes in the same VRML file as the Script node containing this script
(see 4.12.3, Initialize() and shutdown()).

The initialize() function has no parameters. Events generated from initialize() are given the timestamp of when the
Script node was loaded.

C.4.5 shutdown() function

Authors may define a function named shutdown() which is invoked when the corresponding Script node is deleted
or when the world containing the Script node is unloaded or replaced by another world
(see 4.12.3, Initialize() and shutdown()).

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

188

The shutdown() function has no parameters. Events generated from shutdown() are given the timestamp of when
the Script node was deleted.

C.5 Accessing fields and events

C.5.1 Accessing fields and eventOuts of the Script

The fields and eventOuts of a Script node are accessible from its ECMAScript functions. As in all other nodes, the
fields are accessible only within the Script. The eventIns are not accessible. The Script node's eventIns can be routed
to and its eventOuts can be routed from. Another Script node with a reference to this node can access its eventIns
and eventOuts as for any other node.

A field defined in a Script node is available to the script by using its name. Its value can be read or written. This
value is persistent across function calls. EventOuts defined in the script node can also be read. The value is the last
value assigned.

C.5.2 Accessing fields and eventOuts of other nodes

The script can access any exposedField, eventIn or eventOut of any node to which it has access:

 DEF SomeNode Transform { }
 Script {
 field SFNode node USE SomeNode
 eventIn SFVec3f pos
 directOutput TRUE
 url "javascript:
 function pos(value) {
 node.set_translation = value;
 }"
 }

This example sends a set_translation eventIn to the Transform node. An eventIn on a passed node can appear only
on the left side of the assignment. An eventOut in the passed node can appear only on the right side, which reads the
last value sent out. Fields in the passed node cannot be accessed. However, exposedFields can either send an event
to the "set_..." eventIn or read the current value of the "..._changed" eventOut. This follows the routing model of the
rest of ISO/IEC 14772.

Events generated by setting an eventIn on a node are sent at the completion of the currently executing function. The
eventIn shall be assigned a value of the same datatype; no partial assignments are allowed. For example, it is not
possible to assign the red value of an SFColor eventIn. Since eventIns are strictly write-only, the remainder of the
partial assignment would have invalid field values. Assigning to the eventIn field multiple times during one
execution of the function still only sends one event and that event is the last value assigned.

C.5.3 Sending eventOuts

Assigning to an eventOut of a Script node, or a component of an eventOut (i.e. MF eventOut or a property of an SF
eventOut), sends an event to that eventOut. Events are sent at the end of script execution. An eventOut may be
assigned a value multiple times within the script, but the value sent shall be the last value assigned to the eventOut.
If the value of individual components of an eventOut are changed, the last value given to each component shall be
sent. Components that are not changed in the script, send their initial value determined at the beginning of the script

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

189

execution. For example, the following script segment produces an eventOut value of (4, 3, 1) for the eventOut
SFVec3f foo_changed with an initial value of (6, 6, 6):

a = foo_changed; // copy by reference a(6,6,6)
a.x = 5; // foo_changed(5,6,6)
a.z = 1; // foo_changed(5,6,1)
b = foo_changed; // copy by reference b(5,6,1)
b.x = 4; // foo_changed(4,6,1)
c = a; // copy by reference c(4,6,1)
c.y = 3; // foo_changed(4,3,1))

C.6 ECMAScript objects

C.6.1 Notational conventions

Since ECMAScript is an untyped language it has no language constructs to describe the types of parameters passed
to, or values returned from, functions. Therefore this annex uses a notational convention to describe these types.
Parameters passed are preceded by their type, and the type of any return value precedes the function name. Normally
these types correspond to VRML field types, so those names are used. In the case of no return value, the identifier
void is used. In the case of a ECMAScript numeric value or numeric array return, the identifier numeric or numeric[
] is used. In the case of a string return, the identifier String is used.

C.6.2 VRML field to ECMAScript variable conversion

ECMAScript native datatypes consist of boolean, numeric and string. The language is not typed, so datatypes are
implicit upon assignment. The VRML SFBool is mapped to the ECMAScript boolean. In addition to the
ECMAScript true and false constants, the VRML TRUE and FALSE values may be used. The VRML SFInt32,
SFFloat and SFTime fields are mapped to the numeric datatype and will be maintained in double precision accuracy.
These types are passed by value in function calls. All other VRML fields are mapped to ECMAScript objects.
ECMAScript objects are passed by reference.

The ECMAScript boolean, numeric and string are automatically converted to other datatypes when needed. See
2.[ESCR] for more details.

In ECMAScript, assigning a new value to a variable gives the variable the datatype of the new value, in addition to
the value. Scalar values (boolean and numeric) are assigned by copying the value. Other objects are assigned by
reference.

When assignments are made to eventOuts and fields, the values are converted to the VRML field type. Values
assigned are always copied. This contrasts with normal assignment in ECMAScript where all assignments except for
scalar are performed by reference.

For eventOut objects, assignment copies the value to the eventOut, which will be sent upon completion of the
current function. Assigning an eventOut to an internal variable copies by reference. Subsequent assignments to that
internal variable will behave like assignments to the eventOut (i.e., an event will be sent at the end of the function).
Field objects behave identically to eventOut objects, except that no event is sent upon completion of the function.

Assigning an element of an MF object to an internal variable creates a reference to that element. The type shall be
the corresponding SF object type. If the MF object is an eventOut and an assignment is made to the internal variable,
an event will be sent at the end of the function. Assigning an SF object to an element of an MF object which is a

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

190

field or eventOut (which shall be of the corresponding type) copies the value of the SF object into the MF object
element. If the MF object is an eventOut an event will be sent at the end of the function.

C.6.3 Browser object

This subclause lists the class static functions available in the Browser object which allow scripts to get and set
browser information. Descriptions of the functions are provided in 4.12.10, Browser script interface. The syntax for
a call is:

 mymfnode = Browser.createVrmlFromString(’Sphere {}’);

Table C.1 describes the Browser object's functions, parameters, and return values.

Table C.1 -- Browser object functions

Return value Function

String getName()

String getVersion()

numeric getCurrentSpeed()

numeric getCurrentFrameRate()

String getWorldURL()

void replaceWorld(MFNode nodes)

MFNode createVrmlFromString(String vrmlSyntax)

void createVrmlFromURL(MFString url, Node node, String event)

void addRoute(SFNode fromNode, String fromEventOut,
 SFNode toNode, String toEventIn)

void deleteRoute(SFNode fromNode, String fromEventOut,
 SFNode toNode, String toEventIn)

void loadURL(MFString url, MFString parameter)

void setDescription(String description)

C.6.4 SFColor object

C.6.4.1 Description

The SFColor object corresponds to a VRML SFColor field. All properties are accessed using the syntax
sfColorObjectName.<property>, where sfColorObjectName is an instance of an SFColor object. The properties may

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

191

also be accessed by the indices [0] for red, [1] for green and [2] blue. All functions are invoked using the syntax
sfColorObjectName.method(<argument-list>), where sfColorObjectName is an instance of an SFColor object.

C.6.4.2 Instance creation function

sfColorObjectName = new SFColor(float r, float g, float b)

where

r, g, and b are the red, green, and blue values of the colour. Missing values will be filled by 0.0.

C.6.4.3 Properties

The properties of the SFColor object are described in Table C.2.

Table C.2 -- SFColor properties

Property Description

numeric r red component of the colour

numeric g green component of the colour

numeric b blue component of the colour

C.6.4.4 Functions

The functions of the SFColor object are described in Table C.3.

Table C.3 -- SFColor functions

Function Description

void setHSV(float h, float s, float v) Sets the value of the colour by specifying the values of hue,
saturation, and value.

numeric[3] getHSV() Returns the value of the colour in a 3 element numeric array, with
hue at index 0, saturation at index 1, and value at index 2.

String toString() Returns a String containing the ISO/IEC 14772 UTF-8 encoded
value of r, g and b.

C.6.5 SFImage object

C.6.5.1 Description

The SFImage object corresponds to a VRML SFImage field.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

192

C.6.5.2 Instance creation function

sfImageObjectName = new SFImage(numeric x, numeric y, numeric comp, MFInt32 array)

where

x is the x-dimension of the image. y is the y-dimension of the image. comp is the number of components of the
image (1 for greyscale, 2 for greyscale+alpha, 3 for rgb, 4 for rgb+alpha). Array contains the x × y values for the
pixels of the image. The format of each pixel is an SFImage as in the PixelTexture node.

C.6.5.3 Properties

The properties of the SFImage object are listed in Table C.4.

Table C.4 -- SFImage properties

Property Description

numeric x x dimension of the image

numeric y y dimension of the image

numeric comp

number of components of the image:

1: greyscale

2: greyscale + alpha

3: rgb

4: rgb + alpha

MFInt32 array image data

C.6.5.4 Functions

The function of the SFImage object is described in Table C.5.

Table C.5 -- SFImage function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 UTF-8 encoded value of x, y, comp and array.

C.6.6 SFNode object

C.6.6.1 Description

The SFNode object corresponds to a VRML SFNode field.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

193

C.6.6.2 Instance creation function

sfNodeObjectName = new SFNode(String vrmlstring)

where

vrmlstring is an ISO 10646 string containing a legal VRML string as described in 4.12.10.9, MFNode
createVrmlFromString(SFString vrmlSyntax). If the string produces other than one top-level node, the results are
undefined. The string may contain any number of ROUTE's, PROTO's, and EXTERNPROTO's in accordance with
4.12.10.9, MFNode createVrmlFromString(SFString vrmlSyntax).

C.6.6.3 Properties

Each node may assign values to its eventIns and obtain the last output values of its eventOuts using the
sfNodeObjectName.eventName syntax.

C.6.6.4 functions

The function of the SFNode object is described in Table C.6.

Table C.6 -- SFNode function

Function Description

String toString()

Returns the VRML UTF-8 string that, if parsed as the value of an SFNode field, would
produce this node. If the browser is unable to reproduce this node, the name of the node
followed by the open brace and close brace shall be returned. Additional information may be
included as one or more VRML comment strings.

C.6.7 SFRotation object

C.6.7.1 Description

The SFRotation object corresponds to a VRML SFRotation field. It has four numeric properties: x, y, z (the axis of
rotation) and angle. These may also be addressed by indices [0] through [3].

C.6.7.2 Instance creation functions

sfRotationObjectName = new SFRotation(numeric x, numeric y, numeric z, numeric angle)

where

x, y, and z are the axis of the rotation. angle is the angle of the rotation (in radians). Missing values default to 0.0,
except y, which defaults to 1.0.

sfRotationObjectName = new SFRotation(SFVec3f axis, numeric angle)

where

axis is the axis of rotation. angle is the angle of the rotation (in radians)

sfRotationObjectName = new SFRotation(SFVec3f fromVector, SFVec3f toVector)

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

194

where

fromVector and toVector are normalized and the rotation value that would rotate from the fromVector to the toVector
is stored in the object.

C.6.7.3 Properties

The properties of the SFRotation object are described in Table C.7.

Table C.7 -- SFRotation properties

Property Description

numeric x first value of the axis vector

numeric y second value of the axis vector

numeric z third value of the axis vector

numeric angle the angle of the rotation (in radians)

C.6.7.4 Functions

The functions of the SFRotation object are described in Table C.8.

Table C.8 -- SFRotation functions

Function Description

SFVec3f getAxis() Returns the axis of rotation.

SFRotation inverse() Returns the inverse of this object's rotation.

SFRotation multiply(SFRotation rot) Returns the object multiplied by the passed value.

SFVec3f multVec(SFVec3f vec) Returns the value of vec multiplied by the matrix
corresponding to this object's rotation.

void setAxis(SFVec3f vec) Sets the axis of rotation to the value passed in vec.

SFRotation slerp(SFRotation dest, numeric t)

Returns the value of the spherical linear interpolation
between this object's rotation and dest at value 0 <= t
<= 1. For t = 0, the value is this object's rotation. For t
= 1, the value is dest.

String toString() Returns a String containing the ISO/IEC 14772 UTF-
8 encoded value of x, y, z, and angle.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

195

C.6.8 SFVec2f object

C.6.8.1 Description

The SFVec2f object corresponds to a VRML SFVec2f field. Each component of the vector can be accessed using
the x and y properties or using C-style array dereferencing (i.e., sfVec2fObjectName[0] or sfVec2fObjectName[1]).

C.6.8.2 Instance creation function

sfVec2fObjectName = new SFVec2f(numeric x, numeric y)

Missing values default to 0.0.

C.6.8.3 Properties

The properties of the SFVec2f object are described in Table C.9.

Table C.9 -- SFVec2f properties

Property Description

numeric x First value of the vector.

numeric y Second value of the vector.

C.6.8.4 Functions

The functions of the SFVec2f object are described in Table C.10.

Table C.10 -- SFVec2f functions

Function Description

SFVec2f add(SFVec2f vec) Returns the value of the passed value added, component-wise, to the
object.

SFVec2f divide(numeric n) Returns the value of the object divided by the passed value.

numeric dot(SFVec2f vec) Returns the dot product of this vector and the passed value.

numeric length() Returns the geometric length of this vector.

SFVec2f multiply(numeric n) Returns the value of the object multiplied by the passed value.

SFVec2f normalize() Returns the object converted to unit length .

SFVec2f subtract(SFVec2f vec) Returns the value of the passed value subtracted, component-wise, from
the object.

String toString()
Returns a String containing the ISO/IEC 14772 UTF-8 encoded value of
x and y.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

196

C.6.9 SFVec3f object

C.6.9.1 Description

The SFVec3f object corresponds to a VRML SFVec3f field. Each component of the vector can be accessed using
the x, y, and z properties or using C-style array dereferencing (i.e., sfVec3fObjectName[0], sfVec3fObjectName[1]
or sfVec3fObjectName[2]).

C.6.9.2 Instance creation function

sfVec3fObjectName = new SFVec3f(numeric x, numeric y, numeric z)

Missing values default to 0.0.

C.6.9.3 Properties

The properties of the SFVec3f object are described in Table C.11.

Table C.11 -- SFVec2f properties

Property Description

numeric x First value of the vector.

numeric y Second value of the vector.

numeric z Third value of the vector.

C.6.9.4 Functions

The functions of the SFVec3f object are described in Table C.12.

Table C.12 -- SFVec3f functions

Function Description

SFVec3f add(SFVec3f vec) Returns the value of the passed value added, component-
wise, to the object.

SFVec3f cross(SFVec3f vec) Returns the cross product of the object and the passed value.

SFVec3f divide(numeric n) Returns the value of the object divided by the passed value.

numeric dot(SFVec3f vec) Returns the dot product of this vector and the passed value.

numeric length() Returns the geometric length of this vector.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

197

SFVec3f multiply(numeric n) Returns the value of the object multiplied by the passed
value.

SFVec3f negate() Returns the value of the component-wise negation of the
object.

SFVec3f normalize() Returns the object converted to unit length .

SFVec3f subtract(SFVec3f vec) Returns the value of the passed value subtracted,
component-wise, from the object.

String toString() Returns a String containing the ISO/IEC 14772 UTF-8
encoded value of x, y, and z.

C.6.10 MFColor object

C.6.10.1 Description

The MFColor object corresponds to a VRML MFColor field. It is used to store a one-dimensional array of SFColor
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfColorObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFColor (0, 0, 0).

C.6.10.2 Instance creation function

mfColorObjectName = new MFColor(SFColor c1, SFColor c2, ...)

The creation function shall initialize the array using 0 or more SFColor-valued expressions passed as parameters.

C.6.10.3 Property

The property of the MFColor object is described in Table C.13.

Table C.13 -- MFColor properties

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.10.4 Function

The single function of the MFColor object is described in Table C.14.

Table C.14 -- MFColor functions

Function Description

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

198

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFColor array.

C.6.11 MFFloat object

C.6.11.1 Description

The MFFloat object corresponds to a VRML MFFloat field. It is used to store a one-dimensional array of SFFloat
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfFloatObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is
the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.0.

C.6.11.2 Instance creation function

mfFloatObjectName = new MFFloat(numeric n1, numeric n2, ...)

where

The creation function shall initialize the array using 0 or more numeric-valued expressions passed as parameters.

C.6.11.3 Property

The property of the MFFloat object is described in Table C.15.

Table C.15 -- MFFloat properties

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.11.4 Function

The single function of the MFFloat object is described in Table C.16.

Table C.16 -- MFFloat function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFFloat array.

C.6.12 MFInt32 object

C.6.12.1 Description

The MFInt32 object corresponds to a VRML MFInt32 field. It is used to store a one-dimensional array of SFInt32
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfInt32ObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

199

the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.

C.6.12.2 Instance creation function

mfInt32ObjectName = new MFInt32(numeric n1, numeric n2, ...)

where

The creation function shall initialize the array using 0 or more integer-valued expressions passed as parameters.

C.6.12.3 Property

The property of the MFInt32 object is described in Table C.17.

Table C.17 -- MFInt32 property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.12.4 Function

The single function of the MFInt32 object is described in Table C.18.

Table C.18 -- MFInt32 function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFInt32 array.

C.6.13 MFNode object

C.6.13.1 Description

The MFNode object corresponds to a VRML MFNode field. It is used to store a one-dimensional array of SFNode
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfNodeObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is
the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to NULL.

C.6.13.2 Instance creation function

mfNodeObjectName = new MFNode(SFNode n1, SFNode n2, ...)

where

The creation function shall initialize the array using 0 or more SFNode-valued expressions passed as parameters.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

200

C.6.13.3 Property

The property of the MFNode object is described in Table C.19.

Table C.19 -- MFNode property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.13.4 Function

The single function of the MFNode object is described in Table C.20.

Table C.20 -- MFNode function

Function Description

String toS
tring()

Returns the VRML UTF-8 string that, if parsed as the value of a MFNode field, would produce this
array of nodes. If the browser is unable to reproduce this node, the name of the node followed by the
open brace and close brace shall be returned. Additional information may be included as one or more
VRML comment strings

C.6.14 MFRotation object

C.6.14.1 Description

The MFRotation object corresponds to a VRML MFRotation field. It is used to store a one-dimensional array of
SFRotation objects. Individual elements of the array can be referenced using the standard C-style dereferencing
operator (e.g., mfRotationObjectName[index], where index is an integer-valued expression with 0 <= index < length
and length is the number of elements in the array). Assigning to an element with index >= length results in the array
being dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFRotation
(0, 0, 1, 0).

C.6.14.2 Instance creation function

mfRotationObjectName = new MFRotation(SFRotation r1, SFRotation r2, ...)

where

The creation function shall initialize the array using 0 or more SFRotation-valued expressions passed as parameters.

C.6.14.3 Property

The property of the MFRotation object is described in Table C.21.

Table C.21 -- MFRotation property

Property Description

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

201

numeric length property for getting/setting the number of elements in the array.

C.6.14.4 Function

The single function of the MFRotation object is described in Table C.22.

Table C.22 -- MFRotation function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFRotation array.

C.6.15 MFString object

C.6.15.1 Description

The MFString object corresponds to a VRML 2.0 MFString field. It is used to store a one-dimensional array of
String objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfStringObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to the empty string.

C.6.15.2 Instance creation function

mfStringObjectName = new MFString(String s1, String s2, ...)

where

The creation function shall initialize the array using 0 or more String-valued expressions passed as parameters.

C.6.15.3 Property

The property of the MFString object is described in Table C.23.

Table C.23 -- MFString property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.15.4 Function

The single function of the MFString object is described in Table C.24.

Table C.24 -- MFString function

Function Description

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

202

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFString array.

C.6.16 MFTime object

C.6.16.1 Description

The MFTime object corresponds to a VRML MFTime field. It is used to store a one-dimensional array of SFTime
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfTimeObjectName[index], where index is an integer-valued expression with 0 <= index < length and length is
the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.0.

C.6.16.2 Instance creation function

mfTimeObjectName = new MFTime(numeric n1, numeric n2, ...)

The creation function shall initialize the array using 0 or more numeric-valued expressions passed as parameters.

C.6.16.3 Property

The property of the MFTime object is described in Table C.25.

Table C.25 -- MFTime property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.16.4 Function

The function of the MFTime object is described in Table C.26.

Table C.26 -- MFTime function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFTime array.

C.6.17 MFVec2f object

C.6.17.1 Description

The MFVec2f object corresponds to a VRML MFVec2f field. It is used to store a one-dimensional array of SFVec2f
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfVec2fObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFVec2f (0, 0).

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

203

C.6.17.2 Instance creation function

mfVec2fObjectName = new MFVec2f(SFVec2f v1, SFVec2f v2, ...)

The creation function shall initialize the array using 0 or more SFVec2f-valued expressions passed as parameters.

C.6.17.3 Property

The property of the MFVec2f object is described in Table C.27.

Table C.27 -- MFVec2f property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.17.4 Function

The single function of the MFVec2f object is described in Table C.28.

Table C.28 -- MFVec2f function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFVec2f array.

C.6.18 MFVec3f object

C.6.18.1 Description

The MFVec3f object corresponds to a VRML MFVec3f field. It is used to store a one-dimensional array of SFVec3f
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g., mfVec3fObjectName[index], where index is an integer-valued expression with 0 <= index < length and length
is the number of elements in the array). Assigning to an element with index >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFVec3f (0, 0, 0).

C.6.18.2 Instance creation function

mfVec3fObjectName = new MFVec3f(SFVec3f v1, SFVec3f v2,...)

where

The creation function shall initialize the array using 0 or more SFVec3f-valued expressions passed as parameters.

C.6.18.3 Property

The property of the MFVec3f object is described in Table C.29.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

204

Table C.29 -- MFVec3f property

Property Description

numeric length property for getting/setting the number of elements in the array.

C.6.18.4 Function

The single function of the MFVec3f object is described in Table C.30.

Table C.30 -- MFVec3f function

Function Description

String toString() Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFVec3f array.

C.6.19 VrmlMatrix object

C.6.19.1 Description

The VrmlMatrix object provides many useful functions for performing manipulations on 4x4 matrices. Each of
element of the matrix can be accessed using C-style array dereferencing (i.e., vrmlMatrixObjectName[0][1] is the
element in row 0, column 1). The results of dereferencing a VrmlMatrix object using a single index
(i.e., vrmlMatrixObjectName[0]) are undefined. The translation elements are in the fourth row. For example,
vrmlMatrixObjectName[3][0] is the X offset.

C.6.19.2 Instance creation functions

VrmlMatrixObjectName = new VrmlMatrix(
 numeric f11, numeric f12, numeric f13, numeric f14,
 numeric f21, numeric f22, numeric f23, numeric f24,
 numeric f31, numeric f32, numeric f33, numeric f34,
 numeric f41, numeric f42, numeric f43, numeric f44)

A new matrix initialized with the values in f11 through f44 is created and returned. The translation values will be
f41, f42, and f43.

VrmlMatrixObjectName = new VrmlMatrix()

A new matrix initialized with the identity matrix is created and returned.

C.6.19.3 Properties

The VRMLMatrix object has no properties.

C.6.19.4 Functions

The functions of the VRMLMatrix object are listed in Table C.31.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

205

Table C.31 -- VRMLMatrix functions

Function Description

void setTransform(SFVec3f translation,
 SFRotation rotation,
 SFVec3f scale,
 SFRotation scaleOrientation,
 SFVec3f center)

Sets the VrmlMatrix to the passed values. Any of the
rightmost parameters may be omitted. The function has 0
to 5 parameters. For example, specifying 0 parameters
results in an identity matrix while specifying 1 parameter
results in a translation and specifying 2 parameters results
in a translation and a rotation. Any unspecified parameter
is set to its default as specified for the Transform node.

void getTransform(SFVec3f translation,
 SFRotation rotation,
 SFVec3f scale)

Decomposes the VrmlMatrix and returns the components
in the passed translation, rotation, and scale objects. The
types of these passed objects is the same as the first three
arguments to setTransform. If any passed object is not
sent, or if the null object is sent for any value, that value
is not returned. Any projection or shear information in the
matrix is ignored.

VrmlMatrix inverse() Returns a VrmlMatrix whose value is the inverse of this
object.

VrmlMatrix transpose() Returns a VrmlMatrix whose value is the transpose of this
object.

VrmlMatrix multLeft(VrmlMatrix matrix) Returns a VrmlMatrix whose value is the object
multiplied by the passed matrix on the left.

VrmlMatrix multRight(VrmlMatrix matrix) Returns a VrmlMatrix whose value is the object
multiplied by the passed matrix on the right.

SfVec3f multVecMatrix(SFVec3f vec) Returns an SFVec3f whose value is the object multiplied
by the passed row vector.

SFVec3f multMatrixVec(SFVec3f vec) Returns an SFVec3f whose value is the object multiplied
by the passed column vector.

String toString() Returns a String containing the values of the VrmlMatrix.

C.7 Examples
The following is an example of a Script node which determines whether a given colour contains a lot of red. The
Script node exposes a Color field, an eventIn, and an eventOut:

DEF Example_1 Script {
 field SFColor currentColor 0 0 0
 eventIn SFColor colorIn

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

206

 eventOut SFBool isRed

 url "javascript:
 function colorIn(newColor, ts) {
 // This function is called when a colorIn event is received
 currentColor = newColor;
 }

 function eventsProcessed() {
 if (currentColor[0] >= 0.5)
 // if red is at or above 50%
 isRed = true;
 }"
}

Details on when the functions defined in Example_1 Script are called are provided in 4.12.2, Script execution.

The following example illustrate use of the createVrmlFromURL() function:

 DEF Example_2 Script {
 field SFNode myself USE Example_2
 field SFNode root USE ROOT_TRANSFORM
 field MFString url "foo.wrl"
 eventIn MFNode nodesLoaded
 eventIn SFBool trigger_event

 url "javascript:
 function trigger_event(value, ts){
 // do something and then fetch values
 Browser.createVRMLFromURL(url, myself, ’nodesLoaded’);
 }

 function nodesLoaded(value, timestamp){
 if (value.length > 5) {
 // do something more than 5 nodes in this MFNode...
 }
 root.addChildren = value;
 }"
}

The following example illustrates use of the addRoute() function:

DEF Sensor TouchSensor {}

DEF Baa Script {
 field SFNode myself USE Baa
 field SFNode fromNode USE Sensor
 eventIn SFBool clicked
 eventIn SFBool trigger_event

 url "javascript:
 function trigger_event(eventIn_value){
 // do something and then add routing
 Browser.addRoute(fromNode, ’isActive’, myself, ’clicked’);
 }

 function clicked(value){

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

207

 // do something
 }"
}

The following example illustrates assigning with references and assigning by copying:

Script {
 eventIn SFBool eI
 eventOut SFVec3f eO
 field MFVec3f f []

 url "javascript:
 function eI() {
 eO = new SFVec3f(0,1,2); // ’eO’ contains the value
 // (0,1,2) which will be sent
 // out when the function
 // is complete.
 a = eO; // ’a’ references the eventOut
 // ’e0’
 b = a; // ’a’ and ’b’ now both reference
 // ’e0’
 a.x = 3; // ’e0’ will send (3,1,2) at the
 // end of the function
 f[1] = a; // ’f[1]’ contains the value
 // (3,1,2).
 c = f[1]; // ’c’ reference the field
 // element f[1]
 f[1].y = 4; // ’f[1]’ and ’c’ both contain
 // (3,4,2)
 }"
}

The following example illustrates uses of the fields and functions of SFVec3f and MFVec3f:

DEF SCR-VEC3F Script {
 eventIn SFTime touched1
 eventIn SFTime touched2
 eventIn SFTime touched3
 eventIn SFTime touched4
 eventOut SFVec3f new_translation
 field SFInt32 count 1
 field MFVec3f verts []

 url "javascript:
 function initialize() {
 verts[0] = new SFVec3f(0, 0, 0);
 verts[1] = new SFVec3f(1, 1.732, 0);
 verts[2] = new SFVec3f(2, 0, 0);
 verts[3] = new SFVec3f(1, 0.577, 1.732);
 }

 function touched1 (value) {
 new_translation = verts[count]; // move sphere around tetra
 count++;
 if (count >= verts.length) count = 1;
 }

 function touched2 (value) {

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

208

 var tVec;
 tVec = new_translation.divide(2); // Zeno’s paradox to origin
 new_translation = new_translation.subtract(tVec);
 }

 function touched4 (value) {
 new_translation = new_translation.negate();
 }

 function touched3 (value) {
 var a;
 a = verts[1].length();
 a = verts[3].dot(verts[2].cross(verts[1]));
 a = verts[1].x;
 new_translation = verts[2].normalize();
 new_translation = new_translation.add(new_translation);
 }"
}

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

209

Annex D
(informative)

Examples

D.1 Introduction and table of contents
This annex provides a variety of VRML examples.

D.1 Introduction and table of contents
D.2 Simple example
D.3 Instancing (sharing)
D.4 Prototype example
D.5 Scripting example
D.6 Geometric properties
D.7 Prototypes and alternate representations
D.8 Anchor
D.9 Directional light
D.10 PointSet
D.11 Level of detail
D.12 Color interpolator
D.13 TimeSensor
 D.13.1 Introduction
 D.13.2 Click to animate
 D.13.3 Alarm clock
D.14 Shuttles and pendulums
D.15 Robot
D.16 Chopper
D.17 Guided tour
D.18 Elevator
D.19 Execution model

D.2 Simple example
This example contains a simple scene defining a view of a red sphere and a blue box, lit by a directional light:

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

210

Figure D.1: Red sphere meets blue box

#VRML V2.0 utf8
Transform {
 children [
 NavigationInfo { headlight FALSE } # We’ll add our own light

 DirectionalLight { # First child
 direction 0 0 -1 # Light illuminating the scene
 }

 Transform { # Second child - a red sphere
 translation 3 0 1
 children [
 Shape {
 geometry Sphere { radius 2.3 }
 appearance Appearance {
 material Material { diffuseColor 1 0 0 } # Red
 }
 }
]
 }

 Transform { # Third child - a blue box
 translation -2.4 .2 1
 rotation 0 1 1 .9
 children [
 Shape {
 geometry Box {}
 appearance Appearance {
 material Material { diffuseColor 0 0 1 } # Blue
 }
 }
]
 }

] # end of children for world
}

Click here to view this example in a VRML browser.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

211

D.3 Instancing (sharing)
Reading the following file results in three spheres being drawn. The first sphere defines a unit sphere at the origin
named "Joe", the second sphere defines a smaller sphere translated along the +x axis, the third sphere is a reference
to the second sphere and is translated along the -x axis. If any changes occur to the second sphere (e.g. radius
changes), then the third sphere, will change too:

Figure D.2: Instancing

#VRML V2.0 utf8
Transform {
 children [
 DEF Joe Shape { geometry Sphere {} }
 Transform {
 translation 2 0 0
 children DEF Joe Shape { geometry Sphere { radius .2 } }
 }
 Transform {
 translation -2 0 0
 children USE Joe
 }

]
}

Click here to view this example in a VRML browser. (Note that the spheres are unlit because no appearance was
specified.)

D.4 Prototype example
A simple table with variable colours for the legs and top might be prototyped as:

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

212

Figure D.3: Prototype

#VRML V2.0 utf8
PROTO TwoColorTable [field SFColor legColor .8 .4 .7
 field SFColor topColor .6 .6 .1]
{
 Transform {
 children [
 Transform { # table top
 translation 0 0.6 0
 children
 Shape {
 appearance Appearance {
 material Material { diffuseColor IS topColor }
 }
 geometry Box { size 1.2 0.2 1.2 }
 }
 }

 Transform { # first table leg
 translation -.5 0 -.5
 children
 DEF Leg Shape {
 appearance Appearance {
 material Material { diffuseColor IS legColor }
 }
 geometry Cylinder { height 1 radius .1 }
 }
 }
 Transform { # another table leg
 translation .5 0 -.5
 children USE Leg
 }
 Transform { # another table leg
 translation -.5 0 .5
 children USE Leg

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

213

 }
 Transform { # another table leg
 translation .5 0 .5
 children USE Leg
 }
] # End of root Transform’s children
 } # End of root Transform
} # End of prototype

The prototype is now defined. Although it contains a
number of nodes, only the legColor and topColor fields
are public. Instead of using the default legColor and
topColor, this instance of the table has red legs and
a green top:

TwoColorTable {
 legColor 1 0 0 topColor 0 1 0
}
NavigationInfo { type "EXAMINE" } # Use the Examine viewer

Click here to view this example in a VRML browser.

D.5 Scripting example
This Script node decides whether or not to open a bank vault given openVault and combinationEntered messages.
To do this, it remembers whether or not the correct combination has been entered. The Script node combined with a
Sphere, a TouchSensor and a Sound node to show how is works. When the pointing device is over the sphere, the
combinationEntered eventIn of the Script is sent. Then, when the Sphere is touched (typically when the mouse
button is pressed) the Script is sent the openVault eventIn. This generates the vaultUnlocked eventOut which starts a
’click’ sound. Here is the example:

#VRML V2.0 utf8

DEF OpenVault Script {
 # Declarations of what’s in this Script node:
 eventIn SFTime openVault
 eventIn SFBool combinationEntered
 eventOut SFTime vaultUnlocked
 field SFBool unlocked FALSE

 # Implementation of the logic:
 url "javascript:
 function combinationEntered(value) { unlocked = value; }
 function openVault(value) {
 if (unlocked) vaultUnlocked = value;
 }"
}

Shape {
 appearance Appearance {
 material Material { diffuseColor 1 0 0 }

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

214

 }
 geometry Sphere { }
}

Sound {
 source DEF Click AudioClip {
 url "click.wav"
 stopTime 1
 }

 minFront 1000
 maxFront 1000
 minBack 1000
 maxBack 1000
}

DEF TS TouchSensor { }

ROUTE TS.isOver TO OpenVault.combinationEntered
ROUTE TS.touchTime TO OpenVault.openVault
ROUTE OpenVault.vaultUnlocked TO Click.startTime

Note that the openVault eventIn and the vaultUnlocked eventOut are of type SFTime, which allows them to be wired
directly to a TouchSensor or TimeSensor.

Click here to view this example in a VRML browser.

D.6 Geometric properties
The following IndexedFaceSet (contained in a Shape node) uses all four of the geometric property nodes to specify
vertex coordinates, colours per vertex, normals per vertex, and texture coordinates per vertex (note that the material
sets the overall transparency):

#VRML V2.0 utf8

Shape {
 geometry IndexedFaceSet {
 coordIndex [0, 1, 3, -1, 0, 2, 3, -1]
 coord Coordinate {
 point [0 0 0, 1 0 0, 1 0 -1, 0.5 1 0]
 }
 color Color {
 color [0.2 0.7 0.8, 0.5 0 0, 0.1 0.8 0.1, 0 0 0.7]
 }
 normal Normal {
 vector [0 0 1, 0 0 1, 0 0 1, 0 0 1]
 }
 texCoord TextureCoordinate {
 point [0 0, 1 0, 1 0.4, 1 1]
 }
 }
 appearance Appearance {

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

215

 material Material { transparency 0.5 }
 texture PixelTexture {
 image 2 2 1 0xFF 0x80 0x80 0xFF
 }
 }
}

Click here to view this example in a VRML browser.

D.7 Prototypes and alternate representations
VRML 2.0 has the capability to define new nodes. The following is an example of a new node RefractiveMaterial.
This node behaves as a Material node with an added field, indexOfRefraction. The list of URLs for the
EXTERNPROTO are searched in order. If the browser recognizes the URN,

urn:inet:foo.com:types:RefractiveMaterial,

it may treat it as a native type (or load the implementation). Otherwise, the URL,

http://www.myCompany.com/vrmlNodes/RefractiveMaterial.wrl,

is used as a backup to ensure that the node is supported on any browsers. See below for the PROTO implementation
that treats RefractiveMaterial as a Material (and ignores the refractiveIndex field).

#VRML V2.0 utf8

external protype definition
EXTERNPROTO RefractiveMaterial [
 exposedField SFFloat ambientIntensity
 exposedField SFColor diffuseColor
 exposedField SFColor specularColor
 exposedField SFColor emissiveColor
 exposedField SFFloat shininess
 exposedField SFFloat transparency
 exposedField SFFloat indexOfRefraction]
[
 "urn:inet:foo.com:types:RefractiveMaterial",
 "http://www.myCompany.com/vrmlNodes/RefractiveMaterial.wrl",
 "refractivematerial.wrl",
]

Shape {
 geometry Sphere { }
 appearance Appearance {
 # Instance of a RefractiveMaterial
 material RefractiveMaterial {
 ambientIntensity 0.2
 diffuseColor 1 0 0
 indexOfRefraction 0.3
 }
 }
}

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

216

The URL http://www.myCompany.com/vrmlNodes/RefractiveMaterial.wrl contains the
following:

#VRML V2.0 utf8

PROTO RefractiveMaterial [# prototype definition
 exposedField SFFloat ambientIntensity 0
 exposedField SFColor diffuseColor 0.5 0.5 0.5
 exposedField SFColor specularColor 0 0 0
 exposedField SFColor emissiveColor 0 0 0
 exposedField SFFloat shininess 0
 exposedField SFFloat transparency 0
 exposedField SFFloat indexOfRefraction 0.1]
{
 Material {
 ambientIntensity IS ambientIntensity
 diffuseColor IS diffuseColor
 specularColor IS specularColor
 emissiveColor IS emissiveColor
 shininess IS shininess
 transparency IS transparency
 }
}

Note that the name of the new node type, RefractiveMaterial , is not used by the browser to decide if the node is
native or not; the URL/URN names determine the node’s implementation.

Click here to view this example in a VRML browser.

D.8 Anchor
The target parameter can be used by the anchor node to send a request to load a URL into another frame:

Anchor {
 url "http://somehost/somefile.html"
 parameter ["target=name_of_frame"]
 children Shape { geometry Cylinder {} }
}

An Anchor may be used to bind the viewer to a particular viewpoint in a virtual world by specifying a URL ending
with #viewpointName, where viewpointName is the DEF name of a viewpoint defined in the world. For example:

Anchor {
 url "http://www.school.edu/vrml/someScene.wrl#OverView"
 children Shape { geometry Box {} }
}

specifies an anchor that puts the viewer in the someScene world bound to the viewpoint named OverView when the
box is chosen (note that OverView is the DEF name of the viewpoint, not the value of the viewpoint’s description
field).

If no world is specified, the current scene is implied. For example:

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

217

Anchor {
 url "#Doorway"
 children Shape { geometry Sphere {} }
}

binds the user’s view to the viewpoint with the DEF name Doorway in the current scene.

D.9 Directional light
A directional light source illuminates only the objects in its enclosing grouping node. The light illuminates
everything within this coordinate system including the objects that precede it in the scene graph as shown below:

#VRML V2.0 utf8

Group {
 children [
 DEF UnlitShapeOne Transform {
 translation -3 0 0

 children Shape {
 appearance DEF App Appearance {
 material Material {
 diffuseColor 0.8 0.4 0.2
 }
 }
 geometry Box { }
 }
 }

 DEF LitParent Group {
 children [
 DEF LitShapeOne Transform {
 translation 0 2 0

 children Shape {
 appearance USE App
 geometry Sphere { }
 }
 }

 # lights the shapes under LitParent
 DirectionalLight { }
 DEF LitShapeTwo Transform {
 translation 0 -2 0

 children Shape {
 appearance USE App
 geometry Cylinder { }
 }
 }
]

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

218

 }

 DEF UnlitShapeTwo Transform {
 translation 3 0 0

 children Shape {
 appearance USE App
 geometry Cone { }
 }
 }
]
}

Click here to view this example in a VRML browser.

D.10 PointSet
This simple example defines a PointSet composed of 3 points. The first point is red (1 0 0), the second point is green
(0 1 0), and the third point is blue (0 0 1). The second PointSet instances the Coordinate node defined in the first
PointSet, but defines different colours:

#VRML V2.0 utf8

Shape {
 geometry PointSet {
 coord DEF mypts Coordinate {
 point [0 0 0, 2 2 2, 3 3 3]
 }
 color Color { color [1 0 0, 0 1 0, 0 0 1] }
 }
}

Transform {
 translation 2 0 0

 children Shape {
 geometry PointSet {
 coord USE mypts
 color Color { color [.5 .5 0, 0 .5 .5, 1 1 1] }
 }
 }
}

Click here to view this example in a VRML browser.

D.11 Level of detail
The LOD node is typically used for switching between different versions of geometry at specified distances from the
viewer. However, if the range field is left at its default value, the browser selects the most appropriate child from the

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

219

list given. It can make this selection based on performance or perceived importance of the object. Children should be
listed with most detailed version first just as for the normal case. This "performance LOD" feature can be combined
with the normal LOD function to give the browser a selection of children from which to choose at each distance.

In this example, the browser is free to choose either a detailed or a less-detailed version of the object when the
viewer is closer than 10 meters (as measured in the coordinate space of the LOD). The browser should display the
less detailed version of the object if the viewer is between 10 and 50 meters and should display nothing at all if the
viewer is farther than 50 meters. Browsers should try to honor the hints given by authors, and authors should try to
give browsers as much freedom as they can to choose levels of detail based on performance.

#VRML V2.0 utf8

LOD {
 range [10, 50]
 level [
 LOD {
 level [
 Shape { geometry Sphere { } }
 DEF LoRes Shape { geometry Box { } }
]
 }
 USE LoRes,
 Shape { } # Display nothing
]
}

For best results, ranges should be specified only where necessary and LOD nodes should be nested with and without
ranges.

Click here to view this example in a VRML browser.

D.12 Color interpolator
This example interpolates from red to green to blue in a 10 second cycle:

#VRML V2.0 utf8

DEF myColor ColorInterpolator {
 key [0.0, 0.5, 1.0]
 keyValue [1 0 0, 0 1 0, 0 0 1] # red, green, blue
}

DEF myClock TimeSensor {
 cycleInterval 10.0 # 10 second animation
 loop TRUE # infinitely cycling animation
}

Shape {
 appearance Appearance {
 material DEF myMaterial Material { }
 }
 geometry Sphere { }

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

220

}

ROUTE myClock.fraction_changed TO myColor.set_fraction
ROUTE myColor.value_changed TO myMaterial.set_diffuseColor

Click here to view this example in a VRML browser.

D.13 TimeSensor

D.13.1 Introduction

The TimeSensor is very flexible. The following are some of the many ways in which it can be used:

e. a TimeSensor can be triggered to run continuously by setting cycleInterval > 0, and loop = TRUE, and then
routing a time output from another node that triggers the loop (e.g.,, the touchTime eventOut of a
TouchSensor can be routed to the TimeSensor’s startTime to start the TimeSensor running).

f. a TimeSensor can be made to run continuously upon reading by setting cycleInterval > 0, startTime > 0,
stopTime = 0, and loop = TRUE.

D.13.2 Click to animate

The first example animates a box when the user clicks on it:

#VRML V2.0 utf8

DEF XForm Transform {
 children [
 Shape {
 appearance Appearance {
 material Material { diffuseColor 1 0 0 }
 }
 geometry Box {}
 }
 DEF Clicker TouchSensor {}

 # Run once for 2 sec.
 DEF TimeSource TimeSensor { cycleInterval 2.0 }

 # Animate one full turn about Y axis:
 DEF Animation OrientationInterpolator {
 key [0, .33, .66, 1.0]
 keyValue [0 1 0 0, 0 1 0 2.1, 0 1 0 4.2, 0 1 0 0]
 }
]
}
ROUTE Clicker.touchTime TO TimeSource.startTime
ROUTE TimeSource.fraction_changed TO Animation.set_fraction
ROUTE Animation.value_changed TO Xform.rotation

Click here to view this example in a VRML browser.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

221

D.13.3 Alarm clock

The second example plays chimes once an hour:

#VRML V2.0 utf8

Group {
 children [
 DEF Hour TimeSensor {
 loop TRUE
 cycleInterval 3600.0 # 60*60 seconds == 1 hour
 }

 Sound {
 source DEF Sounder AudioClip {
 url "click.wav" }
 }
 }
]
}

ROUTE Hour.cycleTime TO Sounder.startTime

Click here to view this example in a VRML browser.

D.14 Shuttles and pendulums
Shuttles and pendulums are great building blocks for composing interesting animations. This shuttle translates its
children back and forth along the X axis, from -1 to 1 (by default). The distance field can be used to change this
default. The pendulum rotates its children about the Z axis, from 0 to 3.14159 radians and back again (by default).
The maxAngle field can be used to change this default.

#VRML V2.0 utf8

PROTO Shuttle [
 field SFTime rate 1
 field SFFloat distance 1
 field MFNode children []
 exposedField SFTime startTime 0
 exposedField SFTime stopTime 0
 field SFBool loop TRUE
] {
 DEF F Transform { children IS children }
 DEF T TimeSensor {
 cycleInterval IS rate
 startTime IS startTime
 stopTime IS stopTime
 loop IS loop
 }

 DEF S Script {
 field SFFloat distance IS distance

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

222

 eventOut MFVec3f position

 url "javascript:
 function initialize() {
 // constructor:setup interpolator,
 pos1 = new SFVec3f(-distance, 0, 0);
 pos2 = new SFVec3f(distance, 0, 0);
 position = new MFVec3f(pos1, pos2, pos1);
 }",
 }

 DEF I PositionInterpolator {
 key [0, 0.5, 1]
 keyValue [-1 0 0, 1 0 0, -1 0 0]
 }

 ROUTE T.fraction_changed TO I.set_fraction
 ROUTE I.value_changed TO F.set_translation
 ROUTE S.position TO I.set_keyValue
}

PROTO Pendulum [
 field SFTime rate 1
 field SFFloat maxAngle 3.14159
 field MFNode children []
 exposedField SFTime startTime 0
 exposedField SFTime stopTime 0
 field SFBool loop TRUE
] {
 DEF F Transform { children IS children }
 DEF T TimeSensor {
 cycleInterval IS rate
 startTime IS startTime
 stopTime IS stopTime
 loop IS loop
 }
 DEF S Script {
 field SFFloat maxAngle IS maxAngle
 eventOut MFRotation rotation

 url "javascript:
 function initialize() {
 // constructor:setup interpolator,
 rot1 = new SFRotation(0, 0, 1, 0);
 rot2 = new SFRotation(0, 0, 1, maxAngle/2);
 rot3 = new SFRotation(0, 0, 1, maxAngle);
 rotation = new MFRotation(rot1, rot2, rot3,
 rot2, rot1);
 }",
 }
 DEF I OrientationInterpolator {
 key [0, 0.25, 0.5, 0.75, 1]
 keyValue [0 0 1 0,
 0 0 1 1.57,
 0 0 1 3.14,
 0 0 1 1.57,
 0 0 1 0]

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

223

 }

 ROUTE T.fraction_changed TO I.set_fraction
 ROUTE I.value_changed TO F.set_rotation
 ROUTE S.rotation TO I.set_keyValue
}

Transform {
 translation -3 0 0
 children Pendulum {
 rate 3
 maxAngle 6.28
 children Shape { geometry Cylinder { height 5 } }
 }
}

Transform {
 translation 3 0 0
 children Shuttle {
 rate 2
 children Shape { geometry Sphere { } }
 }
}

Click here to view this example in a VRML browser.

These nodes can be used to do a continuous animation when loop is TRUE. When loop is FALSE they can perform
a single cycle under control of the startTime and stopTime fields. The rate field controls the speed of the animation.
The children field holds the children to be animated.

D.15 Robot
This example is a simple implementation of a robot. This robot has very simple body parts: a cube for his head, a
sphere for his body and cylinders for arms (he hovers so he has no feet!). He is something of a sentry--he walks
forward and walks back across a path. He does this whenever the viewer is near. This makes use of the Shuttle and
Pendulum of D.14.

#VRML V2.0 utf8

EXTERNPROTO Shuttle [
 field SFTime rate
 field SFFloat distance
 field MFNode children
 exposedField SFTime startTime
 exposedField SFTime stopTime
 field SFBool loop
]
"exampleD.14.wrl#Shuttle"

EXTERNPROTO Pendulum [
 field SFTime rate
 field SFFloat maxAngle
 field MFNode children

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

224

 exposedField SFTime startTime
 exposedField SFTime stopTime
 field SFBool loop
]
"exampleD.14.wrl#Pendulum"

Viewpoint {
 position 0 0 150
}

DEF Near ProximitySensor { size 200 200 200 }

DEF Walk Shuttle {
 stopTime 1
 rate 10
 distance 20

 children [
 # The Robot
 Transform {
 rotation 0 1 0 1.57

 children [
 Shape {
 appearance DEF A Appearance {
 material Material {
 diffuseColor 0 0.5 0.7
 }
 }
 geometry Box { } # head
 }
 Transform {
 scale 1 5 1
 translation 0 -5 0
 children Shape {
 appearance USE A
 geometry Sphere { }
 } # body
 }
 Transform {
 rotation 0 1 0 1.57
 translation 1.5 0 0

 children DEF Arm Pendulum {
 stopTime 1
 rate 1
 maxAngle 0.52 # 30 degrees

 children [
 Transform {
 translation 0 -3 0

 children Shape {
 appearance USE A
 geometry Cylinder {
 height 4
 radius 0.5

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

225

 }
 }
 }
]
 }
 }

 # duplicate arm on other side and flip so
 # it swings in opposition
 Transform {
 rotation 0 -1 0 1.57
 translation -1.5 0 0
 children USE Arm
 }
]
 }
]
}

ROUTE Near.enterTime TO Walk.startTime
ROUTE Near.enterTime TO Arm.startTime
ROUTE Near.exitTime TO Walk.stopTime
ROUTE Near.exitTime TO Arm.stopTime

Click here to view this example in a VRML browser.

Move closer to the robot to start the animation.

D.16 Chopper
This example of a helicopter demonstrates how to do simple animation triggered by a TouchSensor. It uses an
EXTERNPROTO to include a Rotor node from the Internet which does the actual animation.

#VRML V2.0 utf8

EXTERNPROTO Rotor [
 field SFTime rate
 field MFNode children
 exposedField SFTime startTime
 exposedField SFTime stopTime
]
"rotor.wrl"

PROTO Chopper [
 field SFTime rotorSpeed 1
] {
 Group {
 children [
 DEF Touch TouchSensor { } # Gotta get touch events
 Inline { url "chopperbody.wrl" }
 DEF Top Rotor {
 # initially, the rotor should not spin
 stopTime 1

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

226

 rate IS rotorSpeed
 children Inline { url "chopperrotor.wrl" }
 }
]
 }

 DEF RotorScript Script {
 eventIn SFTime startOrStopEngine
 eventOut SFTime startEngine
 eventOut SFTime stopEngine
 field SFBool engineStarted FALSE

 url "javascript:
 function startOrStopEngine(value) {
 // start or stop engine:
 if (!engineStarted) {
 startEngine = value;
 engineStarted = TRUE;
 }
 else {
 stopEngine = value;
 engineStarted = FALSE;
 }
 }"
 }

 ROUTE Touch.touchTime TO RotorScript.startOrStopEngine
 ROUTE RotorScript.startEngine TO Top.startTime
 ROUTE RotorScript.stopEngine TO Top.stopTime
}

Viewpoint { position 0 0 5 }
DEF MyScene Group {
 children DEF MikesChopper Chopper { }
}

Click here to view this example in a VRML browser.

D.17 Guided tour
VRML provides control of the viewer’s camera through use of a script. This is useful for things such as guided tours,
merry-go-round rides, and transportation devices such as buses and elevators. These next two examples show a
couple of ways to use this feature.

This example is a simple guided tour through the world. Upon entry, a guide orb hovers in front of the viewer. Click
on this and a tour through the world begins. The orb follows the user around on his tour. A ProximitySensor ensures
that the tour is started only if the user is close to the initial starting point. Note that this is done without scripts
thanks to the touchTime output of the TouchSensor.

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

227

#VRML V2.0 utf8

Group {
 children [
 Transform {
 translation 0 -1 0

 children Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box { size 30 0.2 30 }
 }
 }
 Transform {
 translation -1 0 0

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.5 0.8 0
 }
 }
 geometry Cone { }
 }
 }
 Transform {
 translation 1 0 0

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0 0.2 0.7
 }
 }
 geometry Cylinder { }
 }
 }

 DEF GuideTransform Transform {
 children [
 DEF TourGuide Viewpoint { jump FALSE },
 DEF ProxSensor ProximitySensor { size 50 50 50 }
 DEF StartTour TouchSensor { },
 Transform {
 translation 0.6 0.4 8

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1 0.6 0
 }
 }
 geometry Sphere { radius 0.2 }
 } # the guide orb
 }
]

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

228

 }
]
}

DEF GuidePI PositionInterpolator {
 key [0, 0.2, 0.3, 0.5, 0.6, 0.8, 0.9, 1]
 keyValue [0 0 0, 0 0 -5,
 2 0 -5, 2 6 -15
 -4 6 -15, -4 0 -5,
 0 0 -5, 0 0 0
]
}

DEF GuideRI OrientationInterpolator {
 key [0, 0.2, 0.3, 0.5, 0.6, 0.8, 0.9, 1]
 keyValue [0 1 0 0, 0 1 0 0,
 0 1 0 1.2, 0 1 0 3,
 0 1 0 3.5, 0 1 0 5,
 0 1 0 0, 0 1 0 0,
]
}

DEF TS TimeSensor { cycleInterval 30 } # 60 second tour

ROUTE ProxSensor.isActive TO StartTour.set_enabled
ROUTE StartTour.touchTime TO TS.startTime
ROUTE TS.isActive TO TourGuide.set_bind
ROUTE TS.fraction_changed TO GuidePI.set_fraction
ROUTE TS.fraction_changed TO GuideRI.set_fraction
ROUTE GuidePI.value_changed TO GuideTransform.set_translation
ROUTE GuideRI.value_changed TO GuideTransform.set_rotation

Click here to view this example in a VRML browser.

D.18 Elevator
This is another example of animating the camera by depicting an elevator to ease access to a multi-storey building.
For this example, a 2 storey building is shown and it is assumed that the elevator is already at the ground floor. To
go up, the user just steps onto the elevator platform. A ProximitySensor fires and starts the elevator up
automatically. Additional features such as call buttons for outside the elevator, elevator doors, and floor selector
buttons could be added to make the elevator easier to use.

#VRML V2.0 utf8

Transform {
 translation 0 0 -3.5

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0 1 0
 }

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

229

 }
 geometry Cone { }
 }
}

Transform {
 translation 0 4 -3.5

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1 0 0
 }
 }
 geometry Cone { }
 }
}

Transform {
 translation 0 8 -3.5

 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0 0 1
 }
 }
 geometry Cone { }
 }
}

Group {
 children [
 DEF ETransform Transform {
 children [
 DEF EViewpoint Viewpoint { jump FALSE }
 DEF EProximity ProximitySensor { size 2 5 5 }
 Transform {
 translation 0 -1 0

 children Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box { size 2 0.2 5 }
 }
 }
]
 }
]
}

DEF ElevatorPI PositionInterpolator {
 key [0, 1]
 keyValue [0 0 0, 0 8 0] # a floor is 4 meters high
}
DEF TS TimeSensor { cycleInterval 10 } # 10 second travel time

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

230

ROUTE EProximity.enterTime TO TS.startTime
ROUTE TS.isActive TO EViewpoint.set_bind
ROUTE TS.fraction_changed TO ElevatorPI.set_fraction
ROUTE ElevatorPI.value_changed TO ETransform.set_translation

Click here to view this example in a VRML browser.

D.19
This example illustrates the execution model example described in 4.10.3, Execution model.

#VRML V2.0 utf8
DEF TS TouchSensor { }
DEF Script1 Script {
 eventIn SFTime touchTime
 eventOut SFBool toScript2
 eventOut SFBool toScript3
 eventOut SFString string
 url "javascript:
 function touchTime() {
 toScript2 = TRUE;
 }
 function eventsProcessed() {
 string = ’Script1.eventsProcessed’;
 toScript3 = TRUE;
 }"
}
DEF Script2 Script {
 eventIn SFBool fromScript1
 eventOut SFBool toScript4
 eventOut SFString string
 url "javascript:
 function fromScript1() {
 }
 function eventsProcessed() {
 string = ’Script2.eventsProcessed’;
 toScript4 = TRUE;
 }"
}
DEF Script3 Script {
 eventIn SFBool fromScript1
 eventOut SFBool toScript5
 eventOut SFBool toScript6
 eventOut SFString string
 url "javascript:
 function fromScript1() {
 toScript5 = TRUE;
 }
 function eventsProcessed() {
 string = ’Script3.eventsProcessed’;
 toScript6 = TRUE;
 }"
}

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

231

DEF Script4 Script {
 eventIn SFBool fromScript2
 url "javascript:
 function fromScript2() {
 }"
}
DEF Script5 Script {
 eventIn SFBool fromScript3
 url "javascript:
 function fromScript3() {
 }"
}
DEF Script6 Script {
 eventIn SFBool fromScript3
 eventOut SFBool toScript7
 eventOut SFString string
 url "javascript:
 function fromScript3() {
 toScript7 = TRUE;
 }
 function eventsProcessed() {
 string = ’Script6.eventsProcessed’;
 }"
}
DEF Script7 Script {
 eventIn SFBool fromScript6
 url "javascript:
 function fromScript6() {
 }"
}
ROUTE TS.touchTime TO Script1.touchTime
ROUTE Script1.toScript2 TO Script2.fromScript1
ROUTE Script1.toScript3 TO Script3.fromScript1
ROUTE Script2.toScript4 TO Script4.fromScript2
ROUTE Script3.toScript5 TO Script5.fromScript3
ROUTE Script3.toScript6 TO Script6.fromScript3
ROUTE Script6.toScript7 TO Script7.fromScript6

Display the results
DEF Collector Script {
 eventOut MFString string
 eventIn SFString fromString
 url "javascript:
 function initialize() { string[0] = ’Event Sequence:’; }
 function fromString(s) {
 i = string.length;
 string[i] = ’ ’+i+’) ’+s+’ occurred’;
 }"
}
Transform {
 translation 0 2 0
 children Shape {
 appearance Appearance {
 material Material { diffuseColor 0 0.6 0 }
 }
 geometry Sphere { }
 }

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

232

}
Shape { geometry DEF Result Text { } }
Viewpoint { position 7 -1 18 }
ROUTE Script1.string TO Collector.fromString
ROUTE Script2.string TO Collector.fromString
ROUTE Script3.string TO Collector.fromString
ROUTE Script6.string TO Collector.fromString
ROUTE Collector.string TO Result.string

Click here to view this example in a VRML browser.

Clicking on the green sphere should display a text string for each eventsProcessed event. The two possible correct
displays for this example are:

Event Sequence:
 1) Script1.eventsProcessed occurred
 2) Script2.eventsProcessed occurred
 3) Script3.eventsProcessed occurred
 4) Script6.eventsProcessed occurred

or

Event Sequence:
 1) Script2.eventsProcessed occurred
 2) Script1.eventsProcessed occurred
 3) Script3.eventsProcessed occurred
 4) Script6.eventsProcessed occurred

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

233

Annex E
(informative)

Bibliography

This annex contains the informative references in this part of ISO/IEC 14772. These are references to unofficial
standards or documents. All official standards are referenced in 2, Normative references.

Identifier Reference

DATA
"The Data: URL scheme," IETF Internet Draft working document.
http://ds.internic.net/internet-drafts/draft-masinter-url-data-03.txt

FOLE
Foley, van Dam, Feiner and Hughes, Computer Graphics Principles and Practice, 2nd Edition,
Addison Wesley, Reading, MA, 1990.
http://www.awl.com

 GIF
"GIF™ - Graphics Interchange Format™" - A standard defining a mechanism for the storage and
transmission of raster-based graphics information, Version 89a, CompuServe.
http://www.w3.org/pub/WWW/Graphics/GIF/spec-gif89a.txt

 JAPI

"The Java™ Application Programming Interface, Volume 1 Core Packages" by James Gosling,
Frank Yellin and The Java Team, Addison Wesley, Reading Massachusetts, 1996, ISBN 0-201-
63453-8.
http://java.sun.com/docs/books/apis/index.html

"The Java™ Application Programming Interface, Volume 2 Window Toolkit and Applets" by
James Gosling, Frank Yellin and The Java Team, Addison Wesley, Reading Massachusetts,
1996, ISBN 0-201-63459-7.
http://java.sun.com/docs/books/apis/index.html

MIME
"The Model Primary Content Type for Multipurpose Internet Mail Extensions," IETF Internet
standards track protocol.
http://ds.internic.net/rfc/rfc2077.txt

OPEN
"The OpenGL Graphics System: A Specification (Version 1.1)," Silicon Graphics, Inc., 1995.
http://www.sgi.com/Technology/openGL/glspec1.1/glspec.html

PERL
"Programming Perl" by Larry Wall, Tom Christiansen and Randal L. Schwartz, O'Reilly &
Associates, Sebastapol, CA, 1996.
http://www.oreilly.com/

SNDA "Fundamentals of Computer Music", Dodge & Jerse, Shirmer Books, New York, 1985, pp 20-21.

SNDB
Spatial Audio Work in the Multimedia Computing Group, Graphics, Visualization, and Usability
Center, Georgia Institute of Technology, Atlanta, GA.
http://www.cc.gatech.edu/gvu/multimedia/spatsound/spatsound.html

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

234

URN
"Universal Resource Name," IETF Internet standards track protocol.
http://ds.internic.net/rfc/rfc2141.txt,
http://services.bunyip.com:8000/research/ietf/urn-ietf/

WAV

"Waveform Audio File Format, Multimedia Programming Interface and Data Specification v1.0",
Issued by IBM & Microsoft, 1991.
ftp://ftp.cwi.nl/pub/audio/RIFF-format,
http://keck.ucsf.edu/~jwright/RIFF-format.html,
http://www.seanet.com/HTML/Users/matts/riffmci/riffmci.htm

Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

235

Annex F
(informative)

Recommendations for non-normative
extensions

F.1 Introduction
This annex describes recommended practice for non-normative extensions to ISO/IEC 14772.

F.1 Introduction
F.2 URNs
F.3 Browser extensions

F.2 URNs
URNs are location-independent pointers to a file or to different representations of the same content. In most ways,
URNs can be used like URLs except that, when fetched, a smart browser should fetch them from the closest source.
URN resolution over the Internet has not yet been standardized. However, URNs may be used now as persistent
unique identifiers for referenced entities such as files, EXTERNPROTOs, and textures. General information on
URNs is available at E.[URN].

URNs may be assigned by anyone with a domain name. For example, if the company Foo owns foo.com, it may
allocate URNs that begin with "urn:inet:foo.com:". An example of such usage is

"urn:inet:foo.com:texture:wood001".

See the draft specification referenced in E.[URN] for a description of the legal URN syntax.

To reference a texture, EXTERNPROTO, or other file by a URN, the URN is included in the url field of another
node. For example:

 ImageTexture {
 url ["http://www.foo.com/textures/woodblock_floor.gif",
 "urn:inet:foo.com:textures:wood001"]
 }

specifies a URL file as the first choice and a URN as the second choice.

ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

236

F.3 Browser extensions
Browsers that wish to add functionality beyond the capabilities of ISO/IEC 14772 can do so by creating prototypes
or external prototypes. If the new node cannot be expressed using the prototyping mechanism (i.e., it cannot be
expressed in the form of a VRML scene graph), it can be defined as an external prototype with a unique URN
specification. Authors who use the extended functionality may provide multiple, alternative URLs or URNs to
represent content to ensure it is viewable on all browsers.

For example, suppose a browser wants to create a native Torus geometry node implementation:

 EXTERNPROTO Torus [field SFFloat bigR, field SFFloat smallR]
 ["urn:inet:browser.com:library:Torus",
 "http://.../proto_torus.wrl"]

This browser will recognize the URN and use the URN resource's own private implementation of the Torus node.
Other browsers may not recognize the URN, and skip to the next entry in the URL list and search for the specified
prototype file. If no URLs are found, the Torus is assumed to be an empty node.

The prototype name "Torus" in the above example has no meaning whatsoever. The URN/URL uniquely and
precisely defines the name/location of the node implementation. The prototype name is strictly a convention chosen
by the author and shall not be interpreted in any semantic manner. The following example uses both "Ring" and
"Donut" to name the torus node. However, the URN/URL pair "urn:browser.com:library:Torus,
http://.../proto_torus.wrl" specifies the actual definitions of the Torus node:

 #VRML V2.0 utf8
 EXTERNPROTO Ring [field SFFloat bigR, field SFFloat smallR]
 ["urn:browser.com:library:Torus", "http://.../proto_torus.wrl"]
 EXTERNPROTO Donut [field SFFloat bigR, field SFFloat smallR]
 ["urn:browser.com:library:Torus", "http://.../proto_torus.wrl"]

 Transform { ... children Shape { geometry Ring { } } }
 Transform { ... children Shape { geometry Donut { } } }

