NRMLY!

ISOVIEC 14772-1:1997

&

The
Virtual
Reality
M odeling
L anguage

| nter national Standard | SO/IEC 14772-1:1997

Copyright © 1997 The VRML Consortium Incorporated.



Caopyright Information

Copyright Infor mation

Copyright © 1997 The VRML Consortium Incorporated. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice,

this paragraph and the title, URL, and authors of the Document as referenced below are included on all
such copies and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the VRML Consortium, except as needed for the purpose
of developing VRML standards in which case the procedures for copyrights defined in the VRML
Consortium standards process must be followed.

TITLE: ISO/IEC 14772-1:1997 Virtual Reality Modeling Language (VRML97)
URL: http://www.vrml.or g/SpecificationsVRM L 97
AUTHORS: Rikk Carey, Gavin Bell, Chris Marrin

The limited permissions granted above are perpetual and will not be revoked by the VRML Consortium or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE VRML
CONSORTIUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE.

Except as contained in this notice, the name of the VRML Consortium shall not be used in advertising or to
otherwise promote the sale, use or other dealings of this document without prior written authorization from
the VRML Consortium.

INTELLECTUAL PROPERTY NOTICE

The VRML Consortium takes no position regarding the validity or scope of any intellectual property or

other rights that might be claimed to pertain to the implementation or use of the technology described in

this document or the extent to which any license under such rights might or might not be available; neither
does it represent that it has made any effort to identify any such rights. Information on the VRML
Consortium's procedures with respect to rights in standards-track documents can be found in the VRML
Consortium's Intellectual Property Rights Statement. Copies of claims of rights made available for

publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementers or users of this
specification can be obtained from the VRML Consortium Executive Director.

The VRML Consortium invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be required to practice
this standard. Please address the information to the VRML Consortium Executive Director.

a7
~RmLY 8 —

Other copyrightsand trademarks

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.



Acknowledgements

The VRML Consortium gratefully acknowledges the authors, Rikk Carey, Gavin Bdll, and Chris Marrin,
whose valuable efforts produced the VRML standard.

We would liketo give special thanksto Steve Carson, chair of the ISO/IEC JTC 1/SC 24, Computer
Graphics and Image Processing subcommittee, and to Dick Puk, liaison between the VRML Consortium
and SC 24, for guiding the standards process as well astheir significant contributions to the document
itslf. Also, thanksto all the members of SO who participated in the review and editing of ISO/IEC 14772.

Special thanksto Kouichi Matsuda and the Sony VRML team for their work on the Java annex and to Jan
Hardenbergh for his work on the ECMA Script annex. Thanks to Curtis Beason, Chris Fouts, John
Gebhardt, Rich Gossweiler, Paul Isaacs, and Daniel Woods for writing key sections. Thanksto Justin
Couch and the Script Working Group for drafting several improvementsto the scripting sections. Thanksto
all the others who drafted text for the standard, too numerous to name them all.

Thanksto Mark Pesce, Tony Parid, Mitra, Brian Behlendorf, and Dave Raggett for their early pioneering
work and continued efforts on VRML.

Thanks to the hundreds of participants who contributed ideas, reviews, and feedback on the VRML
standard.

Thanks to Kevin Hughes for the VRML logo artwork.

And, lagt but not leadt, thanks to the members of the VRML community for their support, passion, and hard
work that has made VRML into an International Standard.

a7 . ™)
meL.-”L_ﬁj/—



NIRMLY?

ISOVIEC 14772-1:1997

TheVirtual Reality Modeling L anguage

| nter national Standard | SO/IEC 14772-1:1997

Copyright © 1997 The VRML Consortium Incorporated.

This document is part 1 of ISO/IEC 14772-1:1997 \hiual Reality Modeling Language (VRML), also referred to
as "VRML97". The full title of this part of the International Standardligormation technology -- Computer
graphics and image processing -- The Virtual Reality Modeling Language (VRML) -- Part 1: Functional
specification and UTF-8 encoding.

Background Clauses Annexes

@ Foreword ii @ 1 Scope 1 @ A Grammar 141

@ Introduction iii @ 2 Normative references 3 @ B Java platform 148
& 3 pefinitions 6 | ® cecmAscript 185
@ 4 Concepts 19 @) Examples 209
@ 5Field and event reference 62 @ Bibliography 233
@ 6 Node reference 67 @ F Extensions 235
@ 7 Conformance 132

The Foreword provides background on the standards process for VRMLIfAtheduction describes the purpose,
design criteria, and characteristics of VRML. The following clauses define part 1 of ISO/IEC 14772:

a. Scope defines the problem area that VRML addresses.

b. Normative referenceslists the normative standards referenced in this part of ISO/IEC 14772.
c. Definitions contains the glossary of terminology used in this part of ISO/IEC 14772.

d. Concepts describes various fundamentals of VRML.

e. Field and event reference specifies the datatypes used by nodes.

f.  Nodereference defines the syntax and semantics of VRML nodes.

g. Conformance and minimum support requirements describes the conformance requirements for VRML
implementations.



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

There are several annexesincluded in the specification:

A.

B.

C
D.
E
=

Grammar definition presents the grammar for the VRML file format.

Java platform scripting reference describes how VRML scripting integrates with the Java platform.
ECMAScript scripting reference describes how VRML scripting integrates with ECM A Script.
Examplesincludes a variety of VRML examplefiles.

Bibliography lists the informative, non-standard topics referenced in this part of 1ISO/IEC 14772.

Recommendations for non-normative extensions lists informative recommendations for extensions to
VRML.

\.IF!.I'I'II_HTL_@—

Questions or comments should be sent to rikk@wasabi soft.com.




ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Foreword

\.IF!.I'I'II_HTL_@—

@[Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form a specialized system for worldwide standardization.
National bodies that are members of ISO or IEC participate in the development of
International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. See http://ww.iso.ch for information on ISO and
http://ww.iec.ch forinformation on IEC.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote. See
http://ww.iso.ch/ mene/JTCL. ht ml for information on JTC 1.

International Standard ISO/IEC 14772 was prepared by Joint Technical Committee
ISO/IEC JTC 1,Information technology, Subcommittee 24Computer graphics and

image processing, in collaboration with The VRML Consortium, Inc.
(http://wwv. vim.org) and the VRML moderated email list win-

vrm @rnmnl . orQg).

ISO/IEC 14772 consists of the following part, under the general Itifiermation
technology -- Computer graphics and image processing -- The Virtual Reality Modeling
Language:

Part 1: Functional specification and UTF-8 encoding.
Further parts will follow.

Annexes A to C form an integral part of this part of ISO/IEC 14772. Annexes D to F are
for information only.

\.IF!.I'I'II_HTL_@—




Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

| ntroduction

\.IF!.I'I'II_HTL_@—

@ Purpose

The Virtual Reality Modeling Language (VRML) is a file format for describing
interactive 3D objects and worlds. VRML is designed to be used on the Internet,
intranets, and local client systems. VRML is also intended to be a universal interchange
format for integrated 3D graphics and multimedia. VRML may be used in a variety of

application areas such as engineering and scientific visualization, multimedia
presentations, entertainment and educational titles, web pages, and shared virtual worlds.

@ Design Criteria

VRML has been designed to fulfill the following requirements:

Authorability
Enable the development of computer programs capable of creating, editing, and
maintaining VRML files, as well as automatic trandation programs for converting
other commonly used 3D file formatsinto VRML files.

Composability

Provide the ability to use and combine dynamic 3D objects within a VRML world
and thus allow re-usability.

Extensibility

Provide the ability to add new object types not explicitly defined in VRML.
Be capable of implementation

Capable of implementation on a wide range of systems.
Performance

Emphasize scal able, interactive performance on a wide variety of computing
platforms.

Scalability

Enable arbitrarily large dynamic 3D worlds.

@& Characteristics of VRML

VRML is capable of representing static and animated dynamic 3D and multimedia

objects with hyperlinks to other media such as text, sounds, movies, and images. VRML
browsers, as well as authoring tools for the creation of VRML files, are widely available

for many different platforms.



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

VRML supports an extensibility model that allows new dynamic 3D objects to be defined
allowing application communities to develop interoperable extensions to the base
standard. There are mappings between VRML objects and commonly used 3D
application programmer interface (API) features.

\.IF!.I'I'II_HTL_@—



NRMLY!

ISOVIEC 14772-1:1997

| nfor mation technology --
Computer graphicsand image processing --
The Virtual Reality M odeling L anguage --
Part 1. Functional specification and UTF-8 encoding

1 Scope

\.IF!.I'I'II_HTL_@—

ISO/IEC 14772, the Virtual Reality Modeling Language (VRML), defines a file format that integrates 3D graphics
and multimedia. Conceptually, each VRML fileisa 3D time-based space that contains graphic and aural objects that
can be dynamically modified through a variety of mechanisms. This part of 1ISO/IEC 14772 defines a primary set of
objects and mechanisms that encourage composition, encapsulation, and extension.

The semantics of VRML describe an abstract functional behaviour of time-based, interactive 3D, multimedia
information. |SO/IEC 14772 does not define physical devices or any other implementati on-dependent concepts (e.g.,
screen resolution and input devices). ISO/IEC 14772 is intended for a wide variety of devices and applications, and
provides wide latitude in interpretation and implementation of the functionality. For example, ISO/IEC 14772 does
not assume the existence of a mouse or 2D display device.

Each VRML file

a. implicitly establishes a world coordinate space for all objects defined in the file, as well as all objects
included by thefile;

b. explicitly defines and composes a set of 3D and multimedia objects;
c. can specify hyperlinksto other files and applications;
d. can define object behaviours.

An important characteristic of VRML files is the ability to compose files together through inclusion and to relate
files together through hyperlinking. For example, consider the file earth.wrl which specifies a world that contains a
sphere representing the earth. This file may also contain references to a variety of other VRML files representing
cities on the earth (e.g., file pariswrl). The enclosing file, earth.wrl, defines the coordinate system that al the cities
reside in. Each city file defines the world coordinate system that the city resides in but that becomes a local
coordinate system when contained by the earth file.

Hierarchical file inclusion enables the creation of arbitrarily large, dynamic worlds. Therefore, VRML ensures that
each fileis completely described by the objects contained within it.



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Another essential characteristic of VRML is that it is intended to be used in a distributed environment such as the
World Wide Web. There are various objects and mechanisms built into the language that support multiple

distributed files, including:
g. in-lining of other VRML files;
h. hyperlinking to other files;

i. using established Internet and 1SO standards for other file formats;

j.- defining a compact syntax.

\.IF!.I'I'II_HTL_@—



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

2 Nor mative references

a7
~RmLY 8 —

The following normative documents contain provisions which, through reference in this text, constitute provision
of this part of ISO/IEC 14772. For dated references, subsequent amendments to, or revisions of, any of the
publications do not apply. However, parties to agreements based on this part of ISO/IEC 14772 are encouragec
investigate the possibility of applying the mostent edions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and II
maintain registers of currently valid International Standards.

Annex E, Bibliographycontains a list of informative documents and technology.

|dentifier ||Reference

IETF RFC 1766, Tags for the Identification of Languages, Internet standards track protocpl.

1766 http://ds.internic.net/rfc/rfc1766.txt

ISO/IEC 8632:1992 (all parts) Information technology -- Computer graphics -- Metafile forjthe
CGM storage and transfer of picture description information.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8632

ISO/IEC DIS 16262 Information technology -- ECMAScript: A general purpose, cross-platlfarm
programming language.

ESCR ?
http://www.ecma.ch
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=1626p
HTML HTML 3.2 Reference Specification.

http://mwww.w3.org/TR/REC-htmI32.html

ISO 639:1988 Code for the representation of names of languages.
1639 http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10918&searchtype=refnumbsg
http://www.chemie.fu-berlin.de/diverse/doc/ISO 639.html

=

ISO 3166:1997 (all parts) Codes for the representation of names of countries
13166 and their subdivisionittp://www.iso.ch/isob/switch-engine-
cate.pl?searchtype=refnumber&KEYWORDS=3166

ISO/IEC 8859-1:1987 Information technology -- 8-bit single-byte coded graphic character|sets --
18859 Part 1: Latin alphabet No. 1.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8859




ISO/IEC 14772-1:1997(E)

Copyright © The VRML Consortium Incorporated

ISOC

ISO/IEC 9899:1990 Programming languages -- C.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=9899

ISOG

ISO/IEC 10641:1993 Information technology -- Computer graphics and image processinf
Conformance testing of implementations of graphics standards.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10641&searchtype=refnumbg

JAVA

"The Java Language Specification" by James Gosling, Bill Joy and Guy Steele, Addison
Wesley, Reading Massachusetts, 1996, ISBN 0-201-63451-1.
http://java.sun.com/docs/books/jls/index.html

"The Java Virtual Machine Specification" by Tim Lindhold and Frank Yellin, Addison Wes
Reading Massachusetts, 1996, ISBN 0-201-63452-X.
http://java.sun.com/docs/books/vmspec/index.html

JPEG

"JPEG File Interchange Format,"” JFIF, Version 1.02, 1992.
http://www.w3.org/pubNWW/Graphics/JPEG/jfif.txt

ISO/IEC 10918-1:1994 Information technology -- Digital compression and coding of
continuous-tone still images: Requirements and guidelines.
http://www.iso.ch/isob/switch-engine-cate.pl?KEYWORDS=10918&searchtype=refnumbg

MIDI

Complete MIDI 1.0 Detailed Specification, MIDI Manufactur&ssogation,
P.O. Box 3173, La Habra, CA 90632 USA 1996.
http://www.midi.org

MPEG

ISO/IEC 11172-1:1993 Information technology -- Coding of moving pictures and associalt
audio for digital storage media at up to about 1,5 Mbit/s -- Part 1: Systems.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=111Y

PNG

PNG (Portable Network Graphics), Spedtion Version 1.0, W3C Recommendation, 1
October 1996.
http://www.w3.org/puBNVNWW/TR/REC-png-multi.html

RURL

IETF RFC 1808 Relative Uniform Resource Locator, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1808.txt

URL

IETF RFC 1738 Uniform Resource Locator, Internet standards track protocol.
http://ds.internic.net/rfc/rfc1738.txt

ey,

ed




Copyright © The VRML Consortium Incorporated

ISO/IEC 14772-1:1997(E)

UTF8

ISO/IEC 10646-1:1993 Information technology -- Universal Multiple-Octet Coded Chara
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane, Internet standards track pic
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=1064}

http://ds.internic.net/rfc/rfc2044.txt

ter

btocol.
6

\.IF!.I'I'II_HTL_@—



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3 Definitions

\.IF!.I'I'II_HTL_@—

For the purposes of this part of ISO/IEC 14722, the following definitions apply.

3.1 activate

To cause aensor node to generate an "isActivedvent. The various types of sensor nodes are "activatedisdy
interactions, the passagetaie, or other events. Only active sensor nodes affecushes experience. A Script
node is activated when it receives an event. A pointing device sucimassais activated when one of its buttons is
depressed by a user. Se&2.2, Script executigrior details.

3.2 ancestor

A node which is an antecedent of another node irtrthresfor mation hierarchy.

3.3 author

A person or agent that creadRML files. Authors typically us@enerators to assist them.

3.4 authoring tool

Seegenerator.

3.5 avatar

The abstract representation of theer in a VRML world. The physical dimensions of the avatar are used for
collision detection and terrain following. S&29, Navigationinfpfor details.

3.6 bearing

A straight line passing through tipeinter location in the direction of the pointer. If multiple sensors' geometry
intersect this line, only the sensor nearest the viewer will be eligible to gepesatieregardless of material and
texture properties (e.g., transparency).

3.7 bindable node

A node that may have marinstancesin ascene graph, but only one instance may be active at any instatinef A
node of type Background, Fog, Navigationinfo, or Viewpoint. £6€10, Bindable children noddsr details.

3.8 browser

A computer program that interpréf®ML files, presents their content tauger on adisplay device, and allows the
user to interact witlorlds defined by VRML files by means of a user interface.



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

3.9 browser extension

Nodes defined using the prototyping mechanism that are understood only by céravsers. See
4.9.3, Browser extensionr details.

3.10 built-in node

A node of atype explicitly defined in this part of ISO/IEC 14772.

3.11 callback

A function defined in a&cripting language to whichevents are passed. Séel2.8, Eventin handlindor details.

3.12 candidate

One of potentially several choices. Theer or the browser will select none or one of the choices when all
candidates are identified. S£6.10, Bindable children nodeend6.2, Anchor for details.

3.13 child

An instance of &hildren node.

3.14 children node

One of a set afiode types, instances of which can be collected in a group to share specific properties dependent c
the type of thgrouping node. See4.6.5, Grouping and children nodésr a list of allowable children nodes.

3.15 client system

A computer system, attached tonetwork, that relies on another computer (the server) for essential processing
functions. Many client systems also function as stand-alone computers.

3.16 coallision proxy

A node used as a substitute for all of a Collision node's children during collision detectich3S€ellision for

details.

3.17 colour model

Characterization of a colour space in terms of explicit parameters. ISO/IEC 14772 allows colours to be defined or
with the RGB colour model. However, colour interpolation is performed in the HSV colour space.

3.18 culling

The process of identifyingbjects or parts of objects which do not need to be processed further byailger in
order to produce the desired view of@rld.



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3.19 descendant

A node which descends from another node inttta@sformation hierarchy. A children node.

3.20 display device

A graphics device on which VRMWworlds may be rendered.

3.21 drag sensor

A pointing device sensor that causesgvents to be generated in response to sensor-dependent pointer motions. For
example, the SphereSensor generates spherical rotation evemide Af type CylinderSensor, PlaneSensor, or
SphereSensor. Sdeb.7, Sensor nodeand4.6.7.4, Drag sensqrfer details.

3.22 environmental sensor

A sensomode that generatesvents based on the location of the viewpoint in th&ld or in relation toobjects in
the world. The TimeSensor node generates events at regular intervatee.inA node of type Collision,
ProximitySensor, TimeSensor, or VisibilitySensor. 84e7.2, Environmental senspfsr details.

3.23 event

A message sent from onelode to another as defined byraute. Events signal external stimuli, changes field
values, and interactions between nodes. An event consistsresamp and a field value.

3.24 event cascade
A sequence oévents initiated by a script or sensor event and propagated ficaie to node along one or more

routes. All events in an event cascade are considered to have occurred simultaneoukli0.Se&xecution model
for details.

3.25 eventln

A logical receptor attached tanade which receivegvents.

3.26 eventOut

A logical output terminal attached tonade from which events are sent. The eventOut also stores the event most
recently sent.

3.27 execution model

The rules governing hoavents are processed tyowsers and scripts.



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

3.28 exposed field

A field that is capable of receivingvents via aneventln to change its value(s), and generating events via an
eventOut when its value(s) change.

3.29 exter nal prototype

A prototype defined in an external file and referenced hyRi..

3.30 field

A property or attribute of aode. Eachnode type has a fixed set of fields. Fields may contain various kinds of data
and one or many values. Each field has a default value.

3.31 field name

The identifier of dield. Field names are unique within the scope ofnibue.

3.32file

A collection of related data. A file may be stored on physical media or may exist as a data stream or as data withi
computer program.

3.33frame

A single rendering of aorld on adisplay device or a single time-step in a simulation.

3.34 generator

A computer program which creats&®ML files. A generator may be used by a person or operate automatically.
Synonymous wittauthoring tool.

3.35 geometric property node

A node defining the properties of a specific geometry node. A node of type Color, Coordinate, Normal, or
TextureCoordinate. Sek6.3.2, Geometric property nodésr details.

3.36 geometric sensor node

A node that generateavents based oruser actions, such asmouse click or navigating close to a particulalject.
A node of type CylinderSensor, PlaneSensor, ProximitySensor, SphereSensor, TouchSensor, VisibilitySensor,
Collision. Seet.6.7.1, Introduction to sensefer details.




ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3.37 geometry node

A node containing mathematical descriptions of three-dimensional (3D) points, lines, surfaces, text strings and
solids. A node of type Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet, IndexedLineSet, PointSet,
Sphere, or Text. Sek6.3, Shapes and geometigr details.

3.38 grab

To receiveevents from activated pointing devices (e.gwpuse or wand). A pointing device sensor becomes the
exclusive recipient of pointing device events when one or more pointing devices are activated simultaneously.

3.39 gravity

In the context of ISO/IEC 14772, gravity may be simulated by constraining the motion of the viewpoint to the
lowest possible path (smallest Y-coordinate in the local coordinate system of the viewpoint) consistent with
following the surface of encounterebjects. See6.29, NavigationInfpfor details.

3.40 grouping node

One of a set ofiode types which include a list of nodes, referred to asitiddren nodes. These children nodes are
collected together to share specific properties dependent on the type of the grouping node. Each grouping node
defines a coordinate space for its children relative to its own coordinate space. The children may themselves be
instances of grouping nodes, thus forminyaasformation hierarchy. See4.6.5, Grouping and children noddsr

details.

341 HSV

Hue, Saturation, and Value colour model. BEOLE].

342HTML

HyperText Markup Language. SBRgHTML].

3.43 hyperlink

A reference to &RL that is associated with an Anchmde. See6.2, Anchor for details.

3.44 ideal VRML implementation

An implementation of VRML that presents adbjects and simulates movement without approximation. Not
realizable in practice.

3451EC

International Electrotechnical Commission. &éé p: / / www. i ec. ch.

10



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

346 IETF

Internet  Engineering Task Force. The organization which develdpgernet standards. See
http://ww.ietf.org/overview htnl.

3.47 image

A two-dimensional (2D) rectangular array of pixel values. Pixel values may have from one to four components. St
5.5, SFImagefor details.

3.48 in-lining

The mechanism by which oMRML file is hierarchically included in another.

3.49 Inter net

The world-wide namechetwork of computers which communicate with each other using a common set of
communication protocols known as TCP/IP. §€B-. TheWorld Wide Web is implemented on the Internet.

3.50 instance

A reference to a previously defined and namedk. Nodes are named by means of the DEF syntax and reference
by USE syntax (sed.6.2, DEF/USE semanticsinstances of nodes may be used in any context in which the
defining node may be used.

3.51 interpolator node

A node that defines a piece-wise linear interpolation. A node of type ColorltaéopoCoordinatelnterpolator,
Normalinterpolator, Orientationinterpolator, Positioninterpolator, or Scalarinterpolator.4$e®, Interpolator
nodes for details.

3.52 intranet

A privatenetwork that uses the same protocols and standards &gehet.

3.531S0

International Organization for Standardization. Beep: / / www. i so. ch/infoe/intro. htni .

3.54 JPEG

Joint Photographic Experts Group. SEEPEG]

355JTC1

ISO/IEC Joint Technical Committee 1. Seet p: / / www. i so. ch/ nene/ JTCL. ht i .

11



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3.56 level of detail

The amount of detail or complexity which is displayed at any partituherfor any particulawobject. The level of
detail for an object is controllable as a function of the distance of the object from the viewér2&aeD for
details. (Abbreviated LOD)

3.57 lineterminator

A linefeed character (Ox0A) or a carriage return character (0x0D).

3.58 loop

A sequence okvents which would result in a specifieventOut sending more than one event with the same
timestamp.

3.59 message

A data string sent betweeides upon the occurrence of avent. See4.10, Event processinépr details.

3.60 M| DI

Musical Instrument Digital Interface. A standard for digital music representatiog.[SEBI] .

3.61MIME

Multipurpose Internet Mail Extension. Used to specify filetyping rulesrf@rnet applications, includingprowsers.
See4.5.1, File extension and MIME typdsr details. See ald6.[MIME].

3.62 mouse

A pointing device that moves in two dimensions and that enahliesr 40 move a cursor on display device in
order to point at displayedbjects. One or more push buttons on the mouse allow the user to indicate to the
computer program that some action is to be taken.

3.63 MPEG

Moving Picture Experts Group. Sket p: / / drogo. csel t.stet. it/ npeg/.

3.64 multimedia

An integrated presentation, typically on a computer, of content of various types, such as computer graphics, audio,
and video.

3.65 networ k

Set of interconnected computers.

12



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

3.66 node

The fundamental component ofseene graph in ISO/IEC 14772. Nodes are abstractions of various real-world
objects and concepts. Examples include spheres, lights, and material descriptions. NodeBebds &aid events.
Messages may be sent between nodes alooges.

3.67 node type

A characteristic of eachode that describes, in general, its particular semantics. For example, Box, Group, Sound,
and SpotLight are node types. 3e€, Node semanticand6, Node referencdor details.

3.68 now

The presentime as perceived by theser.

3.69 object

A collection of data and procedures, packaged according to the rules and syntax defined in ISO/IEC 14772. "Objel
is usually synonymous withode.

3.70 object space

The coordinate system in which abbject is defined.

3.71 panorama

A background texture that is placed behind all geometry in the scene and in front of the ground andGky. See
Backgroundfor details.

3.72 parent

A node which is an instance of@ouping node.

3.73 PNG

Portable Network Graphics. A specification for representing two-dimensional imdges. iBee2.[PNG].

3.74 pointer

A location and direction in thertual world defined by thepointing device which theuser is currently using to
interact with the virtual world.

3.75 pointing device
A hardware device connected to tiger’'s computer by which the user directly controls the location and direction of

thepointer. Pointing devices may be either two-dimensional or three-dimensional and may have one or more contr
buttons. Sed.6.7.5, Activating and manipulating sensdos details.

13



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3.76 pointing device sensor

A sensomode that generatesvents based oruser actions, such gsointing device motions or button activations. A
node of type Anchor, CylinderSensor, PlaneSensor, SphereSensor, or TouchSensor. See
4.6.7.3, Pointing device senspfar details.

3.77 palyline
A sequence of straight line segments where the end point of the first segment is coincident with the start point of the

second segment, the endpoint of the second segment is coincident with the start point of the third segment, and so
on. A piecewise linear curve.

3.78 profile

A named collection of criteria for functionality and conformance that defines an implementable subset of a standard.

3.79 prototype

The definition of a newnode type in terms of thenodes defined in this part of ISO/IEC 14772.
Seed4.8, Prototype semanticlr details.

3.80 prototyping

The mechanism for extending the sehade types from within aVRML file.

3.81 publicinterface

The formal definition of aode type in this part of ISO/IEC 14772.

3.82 RGB

The colour model used within ISO/IEC 14772 for the specification of colours. Each colour is represented as a
combination of the three primary colours red, green, and blu&.g&eLE].

3.83 route

The connection between rede generating arevent and a node receiving the event. 829, Route statement
syntax and4.10.2, Route semantider details.

3.84 route graph

The set of connections betweementOuts and eventins formed by ROUTE statements or addRoute method
invocations.

14



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

3.85 run-time name scope

The extent to which a name defined within a VRML file applies and is visible. Several different run-time name
scopes are recognized and are definetl4r, Run-time name scape

3.86 RURL

Relative Uniform Resource Locator. SERURL].

3.87 scene graph

An ordered collection ofirouping nodes and other nodes. Grouping nodes, (such as LOD, Switch, and Transform
nodes) may hawvehildren nodes. Seed.2.3, Scene graphnd4.4.2, Scene graph hierarclgr details.

3.88 script

A set of procedural functions normally executed as part efan cascade (see6.40, Script. A script function may
also be executed asynchronously #4€.6, Asynchronous scripts

3.89 scripting

The process of creating or referring to a script.

3.90 scripting language

A system of syntactical and semantic constructs used to define and automate procedures and processes ¢
computer. Typically, scripting languages are interpreted and executed sequentially on a statement-by-statement b
whereas programming languages are generally compiled prior to execution.

3.91 sensor node
A node that enables theser to interact with thevorld in the scene graph hierarchy. Sensor nodes respond to user

interaction with geometriobjects in the world, the movement of the user through the world, or the passtuye. of
See4.6.7, Sensor nodefor details.

3.92 separator character

A UTF-8 character used to separate syntactical entitieRML file. Specifically, commas, spaces, tabs, linefeeds,
and carriage-returns are separator characters wherever they appear outside of fidtiing See
4.3.1, Clear text (UTF-8) encodinfpr details.

3.93 sibling

A node which shares parent with other nodes.

15



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3.94 simulation tick

The smallest time unit capable of being identified in a digital simulation of analogTime.in the context of
ISO/IEC 14772 is conceptually analog but is realized by an implementation as a digital simulation of abstract analog
time. Seet.11, Time for details.

3.95 special group node

A grouping node that exhibits special behaviour. Examples of such special behaviour include selecting one of many
children nodes to be rendered based on a dynamically changing parameter value and dynamically loading children
nodes from an external file. A node of type Inline, LOD (level of detail), or Switch. See
4.6.5, Grouping and children nodésr details.

3.96 texture
An image used in dexture map to create visual appearance effects when appligebtoetry nodes.

3.97 texture coor dinates

The set of two-dimensional coordinates used by some vertex-pasg®try nodes (e.g., IndexedFaceSet and
ElevationGrid) and specified in the TextureCoordinate node to map textures to the vertices of those nodes. Texture
coordinates range from O to 1 across each axis of the texture image4.®éé, Texture mapsand

6.48, TextureCoordinatéor details.

3.98 texture map

A texture plus the general parameters necessary for mapping the texture to geometry.

3.99 time

A monotonically increasing value generated by a node. Time (0.0) starts at 00:00:00 GMT January 1, 1970. See
4.11, Time for details.

3.100 timestamp

The part of amessage that describes th#me the event occurred and that caused the message to be sent. See
4.11, Time for details.

3.101 transfor mation hierarchy

The subset of thecene graph consisting ofnodes that have well-defined coordinate systems. The transformation
hierarchy excludes nodes that are destendants of the scene graph root nodes and nodes in SFNode or MFNode
fields of Script nodes.

3.102 transparency chunk

A section of a PNG file containing transparency information (derived ZgaNG)).

16



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

3.103 traverse

To process thaodes in ascene graph in the correct order.

3.104 UCS

Universal multiple-octet coded Character Set. SpéTF8].

3.105 URL

Uniform Resource Locator. S@qURL].

3.106 URN

Universal Resource Name. Se4URN].

3.107 UTF-8

The character set used to enco&RIL files. The 8-bit UCS Transformation Format. SE@JTES].

3.108 user

A person or agent who uses and interacts WRNIL files by means of &rowser.

3.109 viewer

A location, direction, and viewing angle inviatual world that determines the portion of the virtual world presented
by thebrowser to theuser.

3.110 virtual world

Seeworld.

3.111 VRML browser

Seebrowser.

3.112 VRML document server

A computer program that locates and transie®ML files and supporting files in response to requests from
browsers.

17



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3.113VRML file
A set of VRML nodes and statements as defined in this part of ISO/IEC 14772. This set of VRML nodes and

statements may be in the form of a file, a data stream, or an in-line sequence of VRML information as defined by a
particular VRML encoding.

3.114 wand

A pointing device that moves in three dimensions and that enahlex do indicate a position in the three-
dimensional coordinate system of a world in order to point at displayjeds. One or more push buttons on the
wand allow the user to indicate to the computer program that some action is to be taken.

3.115 white space

One or more consecutive occurrences sdparator character. See4.3.1, Clear text (UTF-8) encodinipr details.

3.116 world

A collection of one or mor®RML files and other multimedia content that, when interpreted WiRML browser,
presents an interactive experience toudee consistent with thauthor’s intent.

3.117 world coor dinate space

The coordinate system in which each VRM&rld is defined. The world coordinate space is an orthogonal right-
handed Cartesian coordinate system. The units of length are metres.

3.118 World Wide Web

The collection of documents, data, and content typically encoded in HTML pagescasdilale via thénternet
using the HTTP protocol.

3.119 XY plane

The plane perpendicular to the Z-axis that passes through the point Z = 0.0.

3.120 YZ plane

The plane perpendicular to the X-axis that passes through the point X = 0.0.

3.121 ZX plane

The plane perpendicular to the Y-axis that passes through the point Y = 0.0.

\.IF!.I'I'II_HTL_@—

18



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

4 Concepts

\.IF!.I'I'II_W@—
@®4.1 Introduction and table of contents

4.1.1 Introduction

This clause describes key concepts in ISO/IEC 14772. This includes how nodes are combined into scene graf
how nodes receive and generate events, how to create node types using prototypes, how to add node types to VF
and export them for use by others, how to incorporate scripts & file, and various general topics on nodes.

4.1.2 Table of contents

SeeTable 4.1for the table of contents for this clause.

Table4.1 -- Table of contents, Concepts

4.1 Introduction and table of contents
4.1.1 Introduction
4.1.2 Table of contents
4.1.3 Conventions used

4.2 Overview
4.2.1 The structure of a VRML file
4.2.2 Header
4.2.3 Scene graph
4.2.4 Prototypes
4.2.5 Event routing
4.2.6 Generating VRML files
4.2.7 Presentation and interaction
4.2.8 Profiles

4.3 UTF-8 file syntax
4.3.1 Clear text (UTF-8) encoding
4.3.2 Statements
4.3.3 Node statement syntax
4.3.4 Field statement syntax
4.3.5 PROTO statement syntax
4.3.6 IS statement syntax
4.3.7 EXTERNPROTO statement syntax
4.3.8 USE statement syntax
4.3.9 ROUTE statement syntax

4.4 Scene gr aph structure

4.4.1 Root nodes

4.4.2 Scene graph hierarchy

4.4.3 Descendant and ancestor nodes
4.4.4 Transformation hierarchy

4.7 Field, eventln, and eventOut semantics

4.8 Prototype semantics

4.8.1 Introduction

4.8.2 PROTO interface declaration semantics

4.8.3 PROTO definition semantics
4.8.4 Prototype scoping rules

4.9 Exter nal prototype semantics

4.9.1 Introduction
4.9.2 EXTERNPROTO interface semantics
4.9.3 EXTERNPROTO URL semantics

4.10 Event processing

4.10.1 Introduction
4.10.2 Route semantics
4.10.3 Execution model

4.10.4 Loops
4.10.5 Fan-in and fan-out

4.11 Time
4.11.1 Introduction
4.11.2 Time origin
4.11.3 Discrete and continuous changes

4.12 Scriptin
4.12.1 Introduction

4.12.2 Script execution
4.12.3Initialize() and $utdown()
4.12.4eventsProcessed()

4.12.5 Scripts with direct outputs

4.12.6 Asynchronous scripts

19



ISO/IEC 14772-1:1997(E)

Copyright © The VRML Consortium Incorporated

4.4.5 Standard units and coordinate system
4.4.6 Run-time name scope

4.5VRML and the World Wide Web
4.5.1 File extension and MIME type
4.5.2 URLs
4.5.3 Relative URLs
4.5.4 Scripting language protocols

4.6 Node semantics
4.6.1 Introduction
4.6.2 DEF/USE semantics
4.6.3 Shapes and geometry
4.6.4 Bounding boxes
4.6.5 Grouping and children nodes
4.6.6 Light sources
4.6.7 Sensor nodes
4.6.8 Interpolator nodes
4.6.9 Time-dependent nodes
4.6.10 Bindable children nodes
4.6.11 Texture maps

4.12.7 Script languages

4.12.8 Eventin handling

4.12.9 Accessing fields and events
4.12.10 Browser script interface

4.13 Navigation
4.13.1 Introduction

4.13.2 Navigation paradigms
4.13.3 Viewing model
4.13.4 Collision detection and terrain following

4.14 L ighting model

4.14.1 Introduction
4.14.2 Lighting 'off'
4.14.3 Lighting 'on'
4.14.4 Lighting equations
4.14.5 References

4.1.3 Conventions used

The following conventions are used throughout this part of ISO/IEC 14772:

Italics are used for event and field names, and are also used when new terms are introduced and equation variables
are referenced.

A fixed- space font is used for URL addresses and source code examples. ISO/IEC 14772 UTF-8 encoding
examples appear ol d, fi xed- space font.

Node type names are appropriately capitalized (e.g., "The Billboard node is a grouping node..."). However, the
concept of the node is often referred to in lower case in order to refer to the semantics of the node, not the node itself
(e.g., "To rotate the billboard...").

The form "Oxhh" expresses a byte as a hexadecimal number representing the bit configuration for that byte.

Throughout this part of ISO/IEC 14772, references are denoted using the "x.JABCD]" notation, where "x" denotes
which clause or annex the reference is described in and "[ABCD]" is an abbreviation of the reference title. For
example, 2.[ABCD] refers to a reference described in clause 2 and E.[ABCD] refers to a reference described in
annex E.

wnmu?@—
®4.2 Overview

4.2.1 Thestructureof aVRML file

A VRML file consists of the following major functional components: the headesc¢he graph, the prototypes,
andevent routing. The contents of this file are processed for presentation and interaction by a program known as a
browser.

20



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

4.2.2 Header

For easy identification of VRML files, every VRML file shall begin with:
#VRML V2.0 <encoding type> [optional comrent] <line term nator>

The header is a single line of UTF-8 text identifying the file as a VRML file and identifying the encoding type of the
file. It may also contain additional semantic information. There shall be exactly one space sepérRiihg from

"V2. 0" and 'V2. 0" from "<encodi ng type>". Also, the "encodi ng type>" shall be followed by a
linefeed (0x0a) or carriage-return (0x0d) character, or by one or more space (0x20) or tab (0x09) characte
followed by any other characters, which are treated as a comment, and terminated by a linefeed or carriage-ret
character.

The <encodi ng type>is either Ut f 8" or any other authorized values defined in other parts of ISO/IEC 14772.
The identifier ut f 8" indicates a clear text encoding that allows for international characters to be displayed in
ISO/IEC 14772 using the UTF-8 encoding defined in ISO/IEC 10646-1 (otherwise known as Unicode); set
2.[UTF8]. The usage of UTF-8 is detailedém 7, Text node. The header for a UTF-8 encoded VRML file is

#VRML V2.0 utf8 [optional comment] <line term nator>

Any characters after theencodi ng t ype> on the first line may be ignored by a browser. The header line ends
at the occurrence of@line termnator> A<line term nator>is a linefeed character (Ox0a) or a
carriage-return character (0x0d) .

4.2.3 Scene graph

The scene graph contains nodes which describe objects and their properties. It contains hierarchically grouy
geometry to provide an audio-visual representation of objects, as well as nodes that participate in the eve
generation and routing mechanism.

4.2.4 Prototypes

Prototypes allow the set of VRML node types to be extended by the user. Prototype definitions can be included
the file in which they are used or defined externally. Prototypes may be defined in terms of other VRML nodes ¢
may be defined using a browser-specific extension mechanism. While ISO/IEC 14772 has a standard format |
identifying such extensions, their implementation is browser-dependent.

4.2.5 Event routing

Some VRML nodes generate events in response to environmental changes or user interaction. Event routing gi
authors a mechanism, separate from the scene graph hierarchy, through which these events can be propagat
effect changes in other nodes. Once generated, events are sent to their routed destinations in time order
processed by the receiving node. This processing can change the state of the node, getierateesgdts, or
change the structure of the scene graph.

Script nodes allow arbitrary, author-defined event processing. An event received by a Script node causes f
execution of a function within a script which has the ability to send events through the normal event routin
mechanism, or bypass this mechanism and send events directly to any node to which the Script node has a refere
Scripts can also dynamically add or delete routes and thereby changing the event-routing topology.

The ideal event model processes all events instantaneously in the order that they are generated. A timestamp se
two purposes. First, it is a conceptual device used to describe the chronological flow of the event mechanism.
ensures that deterministic results can be achieved by real-world implementations that address processing delays
asynchronous interaction with external devices. Second, timestamps are also made available to Script nodes to al
events to be processed based on the order of user actions or the elapsed time between events.

21



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

4.2.6 Generating VRML files

A generator is a human or computerized creator of VRML files. It is the responsibility of the generator to ensure the
correctness of the VRML file and the availability of supporting assets (e.g., images, audio clips, other VRML files)
referenced therein.

4.2.7 Presentation and interaction

The interpretation, execution, and presentation of VRML files will typically be undertaken by a mechanism known
as a browser, which displays the shapes and sounds in the scene graph. This presentation is kiroueh \asr kd

and is navigated in the browser by a human or mechanical entity, knownsas &he world is displayed as if
experienced from a particular location; that position and orientation in the world is known \aewére The

browser provides navigation paradigms (such as walking or flying) that enable the user to move the viewer through
the virtual world.

In addition to navigation, the browser provides a mechanism allowing the user to interact with the world through
sensor nodes in the scene graph hierarchy. Sensors respond to user interaction with geometric objects in the world,
the movement of the user through the world, or the passage of time.

The visual presentation of geometric objects in a VRML world follows a conceptual model designed to resemble the
physical characteristics of light. The VRML lighting model describes how appearance properties and lights in the
world are combined to produce displayed colours4sbé, Lighting Modelfor details).

Figure 4.1lillustrates a conceptual model of a VRML browser. The browser is portrayed as a presentation application
that accepts user input in the forms of file selection (explicit and implicit) and user interface gestures
(e.g., manipulation and navigation using an input device). The three main components of the browser are: Parser,
Scene Graph, and Audio/Visual Presentation. The Parser component reads the VRML file and creates the Scene
Graph. The Scene Graph component consists of the Transformation Hierarchy (the nodes) and the Route Graph. The
Scene Graph also includes the Execution Engine that processes events, reads and edits the Route Graph, and makes
changes to the Transform Hierarchy (nodes). User input generally affects sensors and navigation, and thus is wired
to the Route Graph component (sensors) and the Audio/Visual Presentation component (navigation). The
Audio/Visual Presentation component performs the graphics and audio rendering of the Transform Hierarchy that
feeds back to the user.

4.2.8 Profiles

ISO/IEC 14772 supports the concept of profiles. A profile is a named collection of functionality and requirements
which shall be supported in order for an implementation to conform to that profile. Only one profile is defined in
this part of ISO/IEC 14772. The functionality and minimum support requirements described in ISO/IEC 14772-1
form the Base profile. Additional profiles may be defined in other parts of ISO/IEC 14772. Such profiles shall
incorporate the entirety of the Base profile.

a7
~RmLY 8 —

®4.3 UTF-8 file syntax

4.3.1 Clear text (UTF-8) encoding

This section describes the syntax of UTF-8-encoded, human-readable VRML files. A more formal description of the
syntax may be found iannex A, Grammar definitioThe semantics of VRML in terms of the UTF-8 encoding are

22



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

presented in this part of ISO/IEC 14772. Other encodings may be defined in other parts of ISO/IEC 14772. Su
encodings shall describe how to map the UTF-8 descriptions to and from the corresponding encoding elements.

For the UTF-8 encoding, the # character begins a comment. The first line of the file, the header, also starts witt
"#" character. Otherwise, all characters following a "#", until the next line terminator, are ignored. The only
exception is within double-quoted SFString and MFString fields where the "#" character is defined to be part of th
string.

VRML
Browser

Transformmation
Hierarchy

Audio/Visual E
Presentation

Luser

Figure 4.1 -- Conceptual model of a VRML browser

Commas, spaces, tabs, linefeeds, and carriage-returns are separator characters wherever they appear outside of
fields. Separator characters and comments are collectively tevintegpace.

23



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

A VRML document server may strip comments and extra separators including the comment portion of the header
line from a VRML file before transmitting i#Vorldinfo nodes should be used for persistent information such as
copyrights or author information.

Field, event, PROTO, EXTERNPROTO, and node names shall not contain control characters (0x0-Ox1f, Ox7f),
space (0x20), double or single quotes (0x22: ", 0x27: "), sharp (0x23: #), comma (0x2c: ,), period (Ox2e: .), brackets
(Ox5b, 0x5d: []), backslash (0x5c:\) or braces (0x7b, 0x7d: {}). Further, their first character shall not be a digit
(0x30-0x39), plus (0x2b: +), or minus (0x2d: -) character. Otherwise, names may contain any ISO 10646 character
encoded using UTF-8. VRML is case-sensitive; "Sphere" is different from "sphere" and "BEGIN" is different from
"begin."

The following reserved keywords shall not be used for field, event, PROTO, EXTERNPROTO, or node names:

« DEF

e EXTERNPROTO
* FALSE
e IS

e NULL

e PROTO
« ROUTE
e TO

« TRUE

« USE

* eventin

¢ eventOut
e exposedField
o field

4.3.2 Statements

After the required header, a VRML file may contain any combination of the following:

a. Any number of PROTO or EXTERNPROTO statements 4s@ePrototype semantjcs

b. Any number of root node statements (4ek1, Root nodgs

c. Any number of USE statements (g£6.2, DEF/USE semantigs

d. Any number of ROUTE statements (ge&0.2, Route semantjcs

4.3.3 Node statement syntax

A node statement consists of an optional name for the node followed by the node's type and then the body of the
node. A node is given a name using the keyword DEF followed by the name of the node. The node's body is
enclosed in matching brace¢ (¢'"). Whitespace shall separate the DEF, name of the node, and node type, but is not
required before or after the curly braces that enclose the node's body3SKedes for details on node grammar

rules.

24



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

[ DEF <name>] <nodeType> { <body> }

A node's body consists of any number of field statements, IS statements, ROUTE statements, PROTO statement
EXTERNPROTO statements, in any order.

See4.6.2, DEF/USEsematnics for more details on node naming.4ASgd, Field statement synterr a description
of field statement syntax and.7, Field, eventin, and eventOut semantifte a description of field statement
semantics. Se¢.6, Node semanticfor a description of node statement semantics.

4.3.4 Field statement syntax

A field statement consists of the name of the field followed by the field's value(s). The following illustrates the
syntax for a single-valued field:

<fi el dNanme> <fi el dval ue>

The following illustrates the syntax for a multiple-valued field:

<fiel dName> [ <fiel dval ues> ]

SeeA.4, Fields for details on field statement grammar rules.

Each node type defines the names and types of the fields that each node of that type contains. The same field n
may be used by multiple node types. SgEield and event referender the definition and syntax of specific field

types.

Seed.7, Field, eventln, and eventOut semanfiasa description of field statement semantics.

4.3.5 PROTO statement syntax

A PROTO statement consists of the PROTO keyword, followed in order by the prototype name, prototype interfac
declaration, and prototype definition:

PROTO <nanme> [ <declaration>] { <definition>}

SeeA.2, Generaglfor details on prototype statement grammar rules.

A prototype interface declaration consists of eventin, eventOut, field, and exposedField declaratibris Kssd,
eventln, and eventOut semanjienclosed in square brackets. Whitespace is not required before or after the
brackets.

Eventln declarations consist of the keyword "eventIn" followed by an event type and a name:
eventl n <event Type> <name>

EventOut declarations consist of the keyword "eventOut" followed by an event type and a name:
event Qut <event Type> <nane>

Field and exposedField declarations consist of either the keyword "field" or "exposedField" followed by a field type
a name, and an initial field value of the given field type.

field <fieldType> <nane> <initial field val ue>

exposedFi el d <fiel dType> <nanme> <initial field val ue>

25



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Field, eventln, eventOut, and exposedField names shall be unique in each PROTO statement, but are not required to
be unique between different PROTO statements. If a PROTO statement contains an exposedField with a given name
(e.g.,zz2), it shall not contain eventins or eventOuts with the pradix or the suffix_changed and the given name
(e.g.,set_zzz or zzz_changed).

A prototype definition consists of at least one node statement and any number of ROUTE statements, PROTO
statements, and EXTERNPROTO statements in any order.

See4.8, Prototype semantic®r a description of prototype semantics.

4.3.6 | S statement syntax

The body of a node statement that is inside a prototype definition may contain IS statements. An IS statement
consists of the name of a field, exposedField, eventin or eventOut from the node's public interface followed by the
keyword IS followed by the name of a field, exposedField, eventin or eventOut from the prototype's interface
declaration:

<field/ event Nane> | S <fi el d/ event Name>

SeeA.3, Nodes for details on prototype node body grammar rules 4S2ePrototype semantic®r a description of
IS statement semantics.

4.3.7 EXTERNPROTO statement syntax

An EXTERNPROTO statement consists of the EXTERNPROTO keyword followed in order by the prototype's
name, its interface declaration, and a list (possibly empty) of double-quoted strings enclosed in square brackets. If
there is only one member of the list, the brackets are optional.

EXTERNPROTO <nane> [ <external declaration>] URL or [ URLs ]

SeeA.2, Generglfor details on external prototype statement grammar rules.

An EXTERNPROTO interface declaration is the same as a PROTO interface declaration, with the exception that
field and exposedField initial values are not specified and the prototype definition is specified in a separate VRML
file to which the URL(S) refer.

4.3.8 USE statement syntax

A USE statement consists of the USE keyword followed by a node name:
USE <nane>

SeeA.2, Generglfor details on USE statement grammar rules.

4.3.9 ROUTE statement syntax

A ROUTE statement consists of the ROUTE keyword followed in order by a nhode name, a period character, a field
name, the TO keyword, a node name, a period character, and a field name. Whitespace is allowed but not required
before or after the period characters:

ROUTE <nane>. <fi el d/ event Nane> TO <name>. <fi el d/ event Nane>

SeeA.2, Generglfor details on ROUTE statement grammar rules.

26



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

a7
~RmLY 8 —

®4.4 Scene graph structure

4.4.1 Root nodes

A VRML file contains zero or more root nodes. The root nodes for a VRML file are those nodes defined by the nod
statements or USE statements that are not contained in other node or PROTO staRmoemisdes shall be
children nodes (se€6.5, Grouping and children nogles

4.4.2 Scene graph hierarchy

A VRML file contains a directed acyclic graph. Node statements can contain SFNode or MFNodattehbrsts

that, in turn, contain node (or USE) statements. This hierarchy of nodes is calleehthgraph. Each arc in the
graph from A to B means that node A has an SFNode or MFNode field whose value directly contains node B. S
E.[FOLE]for details on hierarchical scene graphs.

4.4.3 Descendant and ancestor nodes

The descendants of a node are all of the nodes in its SFNode or MFNode fields, as well as all of those nodes
descendants. Thamcestors of a node are all of the nodes that have the node as a descendant.

4.4.4 Transformation hierarchy

The transformation hierarchy includes all of the root nodes and root node descendants that are considered to h
one or more particular locations in the virtual world. VRML includes the notibocalf coordinate sysems, defined

in terms of transformations from ancestor coordinate systems (using Transform or Billboard nodes). The coordine
system in which the root nodes are displayed is calledidid coordinate system.

A VRML browser's task is to present a VRML file to the user; it does this by presenting the transformation
hierarchy to the user. The transformation hierarchy describes the directly perceptible parts of the virtual world.

The following node types are in the scene graph but not affected by the transformation hierarchy: Colorinterpolatc
Coordinatelnterpolator, Navigationinfo, Normallnterpolator, Orientationinterpolator, Positioninterpolator, Script,
Scalarinterpolator, TimeSensor, and Worldinfo. Of these, only Script nodes may have descendants. A descendan
a Script node is not part of the transformation hierarchy unless it is also the descendant of another node that is |
of the transformation hierarchy or is a root node.

Nodes that are descendants of LOD or Switch nodes are affected by the transformation hierarchy, even if the setti
of a Switch node'svhichChoice field or the position of the viewer with respect to a LOD node makes them
imperceptible.

The transformation hierarchy shall be a directed acyclic graph; results are undefined if a node in the transformati
hierarchy is its own ancestor.

4.4.5 Standard units and coor dinate system

ISO/IEC 14772 defines the unit of measure of the world coordinate system to be metres. All other coordina

systems are built from transformations based from the world coordinate systbl®.4.2lists standard units for
ISO/IEC 14772.

27



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Table 4.2 -- Standard units

[ — Ll
H Category IJ Unit IJ
I| Linear distance I| Metres I|
I| Angles I| Radians I|
[ | |
H Time ﬂ Seconds ﬂ
I Colour space I| RGB ([0.,1.], [0.,1.], [0, 1.]) I|
——————————————— | A

ISO/IEC 14772 uses a Cartesian, right-handed, three-dimensional coordinate system. By default, the viewer is on the
Z-axis looking down the -Z-axis toward the origin with +X to the right and +Y straight up. A modelling

transformation (se@.52, Transformand6.6, Billboard or viewing transformation (sé&e53, Viewpoin} can be

used to alter this default projection.

4.4.6 Run-time name scope

Each VRML file defines a run-time name scope that contains all of the root nodes of the file and all of the
descendent nodes of the root nodes, with the exception of:

a. descendent nodes that are inside Inline nodes;

b. descendent nodes that are inside a prototype instance and are not part of the prototype's interface (i.e., are
not in an SF/MFNode field or eventOut of the prototype).

Each Inline node and prototype instance also defines a run-time name scope, consisting of all of the root nodes of
the file referred to by the Inline node or all of the root nodes of the prototype definition, restricted as above.

Nodes created dynamically (using a Script node invoking the Browser.createVrml methods) are not part of any name
scope, until they are added to the scene graph, at which point they become part of the same name scope of their
parent node(s). A node may be part of more than one run-time name scope. A node shall be removed from a name
scope when it is removed from the scene graph.

\.IF!.I'I'II_W@—
®@45VRML and the World Wide Web

4.5.1 Fileextension and MIM E types
The file extension for VRML files iswr | (for world).

The official MIME type for VRML files is defined as:

nmodel / vr

where the MIME major type for 3D data descriptionsrisdel , and the minor type for VRML documents is
vrm .

28



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

For compatibility with earlier versions of VRML, the following MIME type shall also be supported:

x-wor | d/ x-vrm

where the MIME major type is- wor | d, and the minor type for VRML documentsxisvr ni .

SeeE.[MIME] for details.

4.5.2URLs

A URL (Uniform Resource Locator), described 2[URL], specifies a file located on a particular server and
accessed through a specified protocol (e.g., http). In ISOIERC 2, the upper-case term URL refers to a Uniform
Resource Locator, while the italicized lower-case versibmrefers to a field which may contain URLs or in-line
encoded data.

All url fields are of type MFString. The strings in these fields indicate multipkgtidos to search for data in
decreasing order of preference. If the browser cannot locate or interpret the data specified by the first location,
shall try the second and subsequent locations in order until a URL containing interpretable data is encountered. If
interpretable URL's are located, the node type defines the resultant default behaviour. flédld entries are
delimited by double quotation marks " ". Duedt®.4, Scripting language protocols! fields use a superset of the
standard URL syntax defined l[URL]. Details on the string field are locatedbi®, SFString and MFString

More general information on URLSs is describe@ifURL].

45.3 Relative URLs

Relative URLs are handled as described.JRURL]. The base document for EXTERNPROTO statements or nodes
that contain URL fields is:

a. The VRML file in which the prototype is instantiated, if the statement is part of a prototype definition.

b. The file containing the script code, if the statement is part of a string passed to the createVrmIFromURL(
or createVrmlFromString() browser calls in a Script node.

c. Otherwise, the VRML file from which the statement is read, in which case the RURL information provides
the data itself.

4.5.4 Scripting language protocols

The Script node'srl field may also support custom protocols for the various scripting languages. For example, &
scripturl prefixed withjavascript: shall contain ECMAScript source, with line terminators allowed in the string.
The details of each language protocol are defined in the annex for each language. Browsers are not requirec
support any specific scripting language. However, browsers shall adhere to the protocol defined in the correspond
annex of ISO/IEC 14772 for any scripting language which is supported. The following example illustrates the use
mixing custom protocols and standard protocols in a surgjliield (order of precedence determines priority):

#VRML V2.0 utf8
Script {
url [ "javascript: ...", # custom protocol ECMAScri pt
"http://bar.comfoo.js", # std protocol ECMAScri pt
"http://bar.comfoo.class" ] # std protocol Java pl atform byt ecode

}

In the example above, the "..." represents in-line ECMAScript source code.

29



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

a7 . ™)
meL.-”L_ﬁj/—

®4.6 Node semantics

4.6.1 I ntroduction

Each node has the following characteristics:
a. A typename. Examples include Box, Color, Group, Sphere, Sound, or SpotLight.

b. Zeroor more fiedsthat define how each node differsfrom other nodes of the same type. Field values
are stored in the VRML file along with the nodes, and encode the state of the virtual world.

c. A setof eventsthat it can receive and send. Each node may receive zero or more different kinds of events
which will result in some change to the node's state. Each node may also generate zero or more different
kinds of events to report changes in the node's state.

d. Animplementation. The implementation of each node defines how it reacts to events @aeave;, when
it generates events, and its visual or auditory appearance in the virtual world (if any). The VRML standard
defines the semantics of built-in nodes (i.e., nodes with implementations that are provided by the VRML
browser). The PROTO statement may be used to define new types of nodes, with behaviours defined in
terms of the behaviours of other nodes.

e. A name. Nodes can be named. This is used by other statements to reference a specific instantiation of a
node.

4.6.2 DEF/USE semantics

A node given a name using the DEF keyword may be referenced by name later in the same file with USE or
ROUTE statements. The USE statement does not create a copy of the node. Instead, the same node is inserted into
the scene graph a second time, resulting in the node having multiple parents. Using an instance of a node multiple
times is callednstantiation.

Node names are limited in scope to a single VRML file, prototype definition, or string submitted to either the
CreateVrmlFromString browser extension or a construction mechanism for SFNodes within a script. Given a node
named "NewNode" (i.eDEF NewNode), any 'USE NewNode" statements ir6FNode or MFNode fields inside
NewNode's scope refer to NewNode (4ee4, Transformation hierarchfpr restrictions on self-referential nodes).

If multiple nodes are given the same name, each USE statement refers to the closest node with the given name
preceding it in either the VRML file or prototype definition.

4.6.3 Shapes and geometry

4.6.3.1 Introduction

The Shapenode associates a geometry node with nodes that define that geometry's appearance. Shape nodes shall be
part of the transformation hierarchy to have any visible result, and the transformation hierarchy shall contain Shape
nodes for any geometry to be visible (the only nodes that render visible results are Shape nod&aakgrthuad

node). A Shape node contains exactly one geometry node geoit®try field. The following node types are

geometry nodes:

30



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

* Box
e Cone
« Cylinder

* ElevationGrid
e Extrusion
* IndexedFaceSet

¢ IndexedLineSet

* PointSet
e Sphere
e Text

4.6.3.2 Geometric property nodes

Several geometry nodes cont&@woordinate Color, Normal andTextureCoordinat@s geometric property nodes.
The geometric property nodes are defined as individual nodes so that instancing and sharing is possible betw
different geometry nodes.

4.6.3.3 Appear ance nodes

Shape nodes may specify Appearancenode that describes the appearance properties (material and texture) to be
applied to the Shape's geometry. Nodes of the following type may be specified inaténel field of the
Appearance node:

*  Material

Nodes of the following types may be specified bytxaure field of the Appearance node:

e ImageTexture
* PixelTexture
*  MovieTexture

Nodes of the following types may be specified intdxeureTransformfield of the Appearance node:

* TextureTransform

The interaction between such appearance nodes and the Color node is desdrilzed ighting Model

4.6.3.4 Shape hint fields

The Extrusion and IndexedFaceSet nodes each have three SFBool fields that provide hints about the geome
These hints specify the vertex ordering, if the shape is solid, and if the shape contains convex faces. These fields
cew, solid, andconvex, respectively. The ElevationGrid node hasdtwe andsolid fields.

The ccw field defines the ordering of the vertex coordinates of the geometry with respect to user-given o
automatically generated normal vectors used in the lighting model equatiaos: i TRUE, the normals shall
follow the right hand rule; the orientation of each normal with respect to the vertices (taken in order) shall be suc
that the vertices appear to be oriented in a counterclockwise order when the vertices are viewed (in the loc
coordinate system of the Shape) from the opposite direction as the noraoal.idf FALSE, the normals shall be
oriented in the opposite direction. If normals are not generated but are supplied using a Normal node, and |t
orientation of the normals does not match the setting aftthidield, results are undefined.

31



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The solid field determines whether one or both sides of each polygon shall be displag@tl i FALSE, each
polygon shall be visible regardless of the viewing direction (i.e., no backface culling shall be done, and two-sided
lighting shall be performed to illuminate both sides of lit surfacesplild is TRUE, the visibility of each polygon

shall be determined as follows: Létbe the position of the viewer in the local coordinate system of the geometry.
Let N be the geometric normal vector of the polygon, an® lbé any point (besides the local origin) in the plane
defined by the polygon's vertices. ThendfdotN) - (N dotP) is greater than zero, the polygon shall be visible; if it

is less than or equal to zero, the polygon shall be invisible (backface culled).

Theconvex field indicates whether all polygons in the shape are convex (TRUE). A polygon is convex if it is planar,
does not intersect itself, and all of the interior angles at its vertices are less than 180 degrees. Non-planar and self-
intersecting polygons may produce undefined results evengbiivex field is FALSE.

4.6.3.5 Crease anglefield

The creaseAngle field, used by the ElevationGrid, Extrusion, and IndexedFaceSet nodes, affects how default
normals are generated. If the angle between the geometric normals of two adjacent faces is less than the crease
angle, normals shall be calculated so that the faces are smooth-shaded across the edge; otherwise, normals shall be
calculated so that a lighting discontinuity across the edge is produced. For example, a crease angle of 0.5 radians
means that an edge between two adjacent polygonal faces will be smooth shaded if the geometric normals of the two
faces form an angle that is less than 0.5 radians. Otherwise, the faces will appear faceted. Crease angles shall be
greater than or equal to 0.0.

4.6.4 Bounding boxes

Several of the nodes include a bounding box specification comprised of two [filetdd§jze and bboxCenter. A
bounding box is a rectangular parallelepiped of dimensiioxSze centred on the locatiobboxCenter in the local
coordinate system. This is typically used by grouping nodes to provide a hint to the browser on the group's
approximate size for culling optimizations. The default size for bounding boxes (-1, -1, -1) indicates that the user did
not specify the bounding box and the effect shall be as if the bounding box were infinitely |bbggSe value of

(0, 0, 0) is valid and represents a point in space (i.énfiaitely small box). SpecifiethboxSze field values shall be

>= 0.0 or equal to (-1, -1, -1). TiboxCenter fields specify a position offset from the local coordinate system.

ThebboxCenter andbboxSze fields may be used to specify a maximum possible bounding box for the objects inside

a grouping node (e.g., Transform). These are used as hints to optimize certain operations such as determining
whether or not the group needs to be drawn. The bounding box shall be large enough at all times to enclose the
union of the group's children's bounding boxes; it shall not include any transformations performed by the group
itself (i.e., the bounding box is defined in the local coordinate system of the children). Results are undefined if the
specified bounding box is smaller than the true bounding box of the group.

4.6.5 Grouping and children nodes

Grouping nodes have a field that contains a list of children nodes. Each grouping node defines a coordinate space for
its children. This coordinate space is relative to the coordinate space of the node of which the group node is a child.
Such a node is calledparent node. This means that transformations accumulate down the scene graph hierarchy.

The following node types are grouping nodes:

*  Anchor

» Billboard
* Collision
« Group

e Inline

32



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

« LOD
e Switch
« Transform

The following node types are children nodes:

¢ Anchor - LOD ¢ Sound

» Background * Navigationinfo e SpotLight

» Billboard * Normalinterpolator * SphereSensor
* Collision e Orientationinterpolator «  Switch

* Colorinterpolator e PlaneSensor * TimeSensor

e Coordinatelnterpolator «  PointLight e TouchSensor
e CylinderSensor *  Positioninterpolator e Transform

» DirectionalLight *  ProximitySensor * Viewpoint

* Fog e Scalarinterpolator e VisibilitySensor
e Group e Script e Worldinfo

e Inline e Shape

The following node types are not valid as children nodes:

* Appearance * ElevationGrid * Normal

e AudioClip e Extrusion * PointSet

* Box e ImageTexture e Sphere

* Color * IndexedFaceSet + Text

« Cone e IndexedLineSet e TextureCoordinate
e Coordinate e Material e TextureTransform
e Cylinder e MovieTexture

All grouping nodes excephline, LOD, andSwitch also haveaddChildren andremoveChildren eventin definitions.
The addChildren event appends nodes to the grouping nathéldren field. Any nodes passed to thddChildren
event that are already in the group's children list are ignored. For exampleshifl dnen field contains the nodes Q,

L and S (in order) and the group receivesdaChildren eventin containing (in order) nodes A, L, and Z, the result
is achildren field containing (in order) nodes Q, L, S, A, and Z.

The removeChildren event removes nodes from the grouping nodd#igdren field. Any nodes in the
removeChildren event that are not in the grouping noaéisdren list are ignored. If thehildren field contains the
nodes Q, L, S, A and Z and it receivasaoveChildren eventln containing nodes A, L, and Z, the resultis Q, S.

Note that a variety of node types reference other node types through fields. Some of these are parent-ct

relationships, while others are not (there are node-specific semahtb$). 4.3lists all node types that reference
other nodes through fields.

33



ISO/IEC 14772-1:1997(E)

Table 4.3 -- Nodes with SFNode or M FNode fields

Copyright © The VRML Consortium Incorporated

124

Node Type Field Valid Node Typesfor Field
Anchor children Valid children nodes
Appearance material Material
texture ImageTexture, MovieTexture, Pixel Texture
Billboard children Valid children nodes
Collision children Valid children nodes
ElevationGrid color Color
normal Normal
texCoord TextureCoordinate
Group children Valid children nodes
IndexedFaceSet| | color Color
coord Coordinate
normal Normal
texCoord TextureCoordinate
IndexedLineSet ||color Color
coord Coordinate
LOD level Valid children nodes
Shape appearance ||Appearance
Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFac
geometry IndexedLineSet, PointSet, Sphere, Text
Sound source AudioClip, MovieTexture
Switch choice Valid children nodes
Text fontSyle FontStyle

pSet,

34



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Transform children Valid children nodes

4.6.6 Light sour ces

Shape nodes are illuminated by the sum of all of the lights in the world that affect them. This includes th
contribution of both the direct and ambient illumination from light sources. Ambient illumination results from the
scattering and reflection of light originally emitted directly by light sources. The amount of ambient light is
associated with the individual lights in the scene. This is a gross approximation to how ambient reflection actual
occurs in nature.

The following node types are light source nodes:

« DirectionallLight

e PointLight
e SpotLight

All light source nodes contain antensity, a color, and anambientintensity field. Theintensty field specifies the
brightness of the direct emission from the light, andaimbientintensty specifies the intensity of the ambient
emission from the light. Light intensity may range from 0.0 (no light emission) to 1.0 (full intensitygoltndield
specifies the spectral colour properties of both the direct and ambient light emission as an RGB value.

PointLight and SpotLight illuminate all objects in the world that fall within their volume of lighting influence
regardless of location within the transformation hierarchy. PointLight defines this volume of influence as a spher
centred at the light (defined by a radius). SpotLight defines the volume of influence as a solid angle defined by
radius and a cutoff angle. DirectionalLight nodes illuminate only the objects descended from the light's parer
grouping node, including any descendent children of the parent grouping nodes.

4.6.7 Sensor nodes

4.6.7.1 Introduction to sensors

The following node types are sensor nodes:
*  Anchor
+ Collision
e CylinderSensor
* PlaneSensor
*  ProximitySensor

e SphereSensor
« TimeSensor

* TouchSensor
e VisibilitySensor

Sensors are children nodes in the hierarchy and therefore may be parented by grouping nodes as describe
4.6.5, Grouping and children nodes

35



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Each type of sensor defines when an event is generated. The state of the scene graph after several sensors have
generated events shall be as if each event is processed separately, in order. If sensors generate events at the same
time, the state of the scene graph will be undefined if the results depend on the ordering of the events.

It is possible to create dependencies between various types of sensors. For example, a TouchSensor may result in a
change to a VisibilitySensor node's transformation, which in turn may cause the VisibilitySensor node's visibility
status to change.

The following two sections classify sensors into two categogiesronmental sensors andpointing-device sensors.

4.6.7.2 Environmental sensors
The following node types are environmental sensors:
* Collision

e ProximitySensor
« TimeSensor

e VisibilitySensor

The ProximitySensordetects when the user navigates into a specified region in the world. The ProximitySensor
itself is not visible. Th@imeSensois a clock that has no geometry or location associated with it; it is used to start
and stop time-based nodes such as interpolatorsVilitglitySensor detects when a specific part of the world
becomes visible to the user. T@ellision grouping node detects when the user collides with objects in the virtual
world. Proximity, time, collision, and visibility sensors are each processed independently of whether others exist or
overlap.

When environmental sensors are inserted into the transformation hierarchy and before the presentation is updated
(i.e., read from file or created by a script), they shall generate events indicating any conditions which the sensor is
intended to detect (s&el0.3, Execution modelThe conditions for individual sensor types to generate these initial
events are defined in the individual node specificatiorts Mode reference

4.6.7.3 Pointing-device sensor s

Pointing-device sensors detect user pointing events such as the user clicking ewceaofpigeometry
(i.e., TouchSensor). The following node types are pointing-device sensors:

*  Anchor

e CylinderSensor
« PlaneSensor

e SphereSensor
* TouchSensor

A pointing-device sensor is activated when the user locates the pointing device over geometry that is influenced by
that specific pointing-device sensor. Pointing-device sensors have influence over all geometry that is descended
from the sensor's parent groups. In the case of the Anchor node, the Anchor node itself is considered to be the parent
group. Typically, the pointing-device sensor is a sibling to the geometry that it influences. In other cases, the sensor
is a sibling to groups which contain geometry (i.e., are influenced by the pointing-device sensor).

The appearance properties of the geometry do not affect activation of the sensor. In particular, transparent materials
or textures shall be treated as opaque with respect to activation of pointing-device sensors.

For a given user activation, the lowest enabled pointing-device sensor in the hierarchy is activated. All other
pointing-device sensors above the lowest enabled pointing-device sensor are ignored. The hierarchy is defined by

36



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

the geometry node over which the pointing-device sensor is located and the entire hierarchy upward. If there ¢
multiple pointing-device sensors tied for lowest, each of these is activated simultaneously and independentl
possibly resulting in multiple sensors activating and generating output simultaneously. This feature allow
combinations of pointing-device sensors (e.g., TouchSensor and PlaneSensor). If a pointing-device sensor appeal
the transformation hierarchy multiple times (DEF/USE), it shall be tested for activation in all of the coordinate
systems in which it appears.

If a pointing-device sensor is not enabled when the pointing-device button is activated, it will not generate even
related to the pointing device until after the pointing device is deactivated and the sensor is enabled (i.e., enablin
sensor in the middle of dragging does not result in the sensor activating immediately).

The Anchor node is considered to be a pointing-device sensor when trying to determine which sensor (or Anchc
node) to activate. For example, a click @mape3 is handled bysensorD, a click onShape2 is handled bysensorC
and theAnchorA, and a click orghapel is handled bysensor A andSensor B:

G oup {
children [
DEF Shapel Shape {
DEF Sensor A TouchSensor {
DEF Sensor B Pl aneSensor {
DEF Anchor A Anchor {
url "0
children [
DEF Shape2 Shape { ... }
DEF Sensor C TouchSensor { ... }
G oup {
children [
DEF Shape3 Shape { ... }
DEF SensorD TouchSensor { ... }

—

4.6.7.4 Drag sensors

Drag sensors are a subset of pointing-device sensors. There are three types of drag <eylsaiterSensar
PlaneSensor and SphereSensorDrag sensors have two eventOuts in commtiackPoint_changed and
<value>_changed. These eventOuts send events for each movement of the activated pointing device according
their "virtual geometry” (e.g., cylinder for CylinderSensor). TaekPoint_changed eventOut sends the intersection
point of thebearing with the drag sensor's virtual geometry. Rwalue>_changed eventOut sends the sum of the
relative change since activation plus the sensffisa field. The type and name efvalue>_changed depends on

the drag sensor typerotation changed for CylinderSensor,trandation_changed for PlaneSensor, and
rotation_changed for SphereSensor.

To simplify the application of these sensors, each node haffsanand anautoOffset exposed field. When the
sensor generates events as a response to the activated pointing device<tvatien, changed sends the sum of
the relative change since the initial activation plusdifieet field value. IfautoOffset is TRUE when the pointing-
device is deactivated, theffset field is set to the sensor's lastalue> changed value andoffset sends an
offset_changed eventOut. This enables subsequent grabbing operations to accumulate the chaotpeffdét is
FALSE, the sensor does not set dfffeet field value at deactivation (or any other time).

37



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

4.6.7.5 Activating and manipulating sensors

The pointing device controls a pointer in the virtual world. While activated by the pointing device, a sensor will
generate events as the pointer moves. Typically the pointing device may be categorized as either 2D (e.g.,
conventional mouse) or 3D (e.g., wand). It is suggested that the pointer controlled by a 2D device is mapped onto a
plane a fixed distance from the viewer and perpendicular to the line of sight. The mapping of a 3D device may
describe a 1:1 relationship between movement of the pointing device and movement of the pointer.

The position of the pointer defines a bearing which is used to determine which geometry is being indicated. When
implementing a 2D pointing device it is suggested that the bearing is defined by the vector from the viewer position
through the location of the pointer. When implementing a 3D pointing device it is suggested that the bearing is
defined by extending a vector from the current position of the pointer in the direction indicated by the pointer.

In all cases the pointer is considered to be indicating a specific geometry when that geometry is intersected by the
bearing. If the bearing intersects multiple sensors' geometries, only the sensor nearest to the pointer will be eligible
for activation.

4.6.8 Interpolator nodes

Interpolator nodes are designed for linear keyframed animation. An interpolator node defines a piecewise-linear
function, f(t), on the interval-{nfinity, +infinity). The piecewise-linear function is defined myalues oft, called

key, and then corresponding values dft), called keyValue. The keys shall be monotonically non-decreasing,
otherwise the results are undefined. The keys are not restricted to any interval.

An interpolator node evaluaté$) given any value dof (via theset_fraction eventin) as follows: Let the keysty,
ty, to, ..., thg partition the domain-infinity, +infinity) into then+1 subintervals given byi@finity, to), [to, t1), [t1, t2),
.y [tha, tinfinity). Also, let then valuesvy, vi, Vs, ..., Vo be the values dit) at the associated key valudhe
piecewise-linear interpolating functicift), is defined to be

f(t) Vo, if t <= to,
Vl”l-17 If t >= tl”l-17

Iinterp(t, Vi, V,‘+1), if t; <=t <=t;4

where linterp(t,x,y) is the linear interpolant,
i belongs to {0,1,..., n-2}.

The third conditional value dft) allows the defining of multiple values for a single key, (limits from both the
left and right at a discontinuity iift)). The first specified value is used as the limif(gffrom the left, and the last
specified value is used as the limitf@j from the right. The value dft) at a multiply defined key is indeterminate,
but should be one of the associated limit values.

The following node types are interpolator nodes, each based on the type of value that is interpolated:

e Colorinterpolator
* Coordinatelnterpolator

* Normallnterpolator

* OrientationInterpolator

* PositionInterpolator

e Scalarinterpolator

All interpolator nodes share a common set of fields and semantics:

38



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

eventln SFFI oat set _fraction
exposedFi el d MFFI oat key [...]
exposedFi el d Mr<t ype> keyVal ue [...]
event Cut [ S| M F<type> val ue_changed

The type of thekeyValue field is dependent on the type of the interpolator (e.g., the Colorinterpolkepyal ue
field is of type MFColor).

The set_fraction eventln receives an SFFloat event and causes the interpolator function to evaluate, resulting in
value_changed eventOut with the same timestamp asstefraction event.

ColorInterpolator, Orientationinterpolator, Positioninterpolator, and Scalarinterpolator output a single-value field tc
value_changed. Each value in thkeyValue field corresponds in order to the parameter value itk &eld. Results

are undefined if the number of values in Keg field of an interpolator is not the same as the number of values in
thekeyValue field.

Coordinatelnterpolator and Normallnterpolator send multiple-value resulslie changed. In this case, the
keyValue field is ann x marray of values, wheneis the number of values in the key field ands the number of
values at each keyframe. Eathvalues in thekeyValue field correspond, in order, to a parameter value irkéye
field. Eachvalue_changed event shall contaim interpolated values. Results are undefined if the number of values
in thekeyValue field divided by the number of values in tkey field is not a positive integer.

If an interpolator node'galue eventOut is read before it receives any inpkégyalue[0] is returned ifkeyValue is
not empty. IfkeyValue is empty (i.e., []), the initial value for the eventOut type is returned (e.g., (O, O, 0) for
SFVec3f); se®, Field and event referender initial event values.

The location of an interpolator node in the transformation hierarchy has no effect on its operation. For example, if
parent of an interpolator node is a Switch node witithChoice set to -1 (i.e., ignore its children), the interpolator
continues to operate as specified (receives and sends events).

4.6.9 Time-dependent nodes

AudioClip, MovieTexture and TimeSensorare time-dependent nodes that activate and deactivate themselves at
specified times. Each of these nodes contains the exposedBiattiEme, stopTime, andloop, and the eventOut:
isActive. The values of the exposedFields are used to determine when the node becomes active or inactive Al
under certain conditions, these nodes ignore events to some of their exposedFields. A node ignores an eventin by
accepting the new value and not generating an everdi@uged event. In this subclause, an abstract time-
dependent node can be any one of AudioClip, MovieTexture, or TimeSensor.

Time-dependent nodes can execute for 0 or more cycles. A cycle is defined by field data within the node. If, at tl
end of a cycle, the value dbop is FALSE, execution is terminated (see below for events at termination).
Conversely, ifoop is TRUE at the end of a cycle, a time-dependent node continues execution into the next cycle.
time-dependent node witbop TRUE at the end of every cycle continues cycling foreveaifTime >= stopTime,

or until stopTime if startTime < stopTime.

A time-dependent node generatessdwative TRUE event when it becomes active and generatéeshetive FALSE
event when it becomes inactive. These are the only times at whidAdtive event is generated. In particular,
iSActive events are not sent at each tick of a simulation.

A time-dependent node is inactive until tartTime is reached. When timaw becomes greater than or equal to
startTime, anisActive TRUE event is generated and the time-dependent node becomesraetivef¢rs to the time

at which the browser is simulating and displaying the virtual world). When a time-dependent node is read from
VRML file and the ROUTEsSs specified within the VRML file have been established, the node should determine if i
is active and, if so, generate igActive TRUE event and begin generating any other necessary events. However, if a
node would have become inactive at any time before the reading of the VRML file, no events are generated upon
completion of the read.

39



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

An active time-dependent node will become inactive wdepilime is reached itopTime > gartTime. The value

of stopTime is ignored ifstopTime <= startTime. Also, an active time-dependent node will become inactive at the
end of the current cycle lbop is FALSE. If an active time-dependent nogédeaives aset_loop FALSE event,
execution continues until the end of the current cycle or sioplime (if stopTime > gartTime), whichever occurs
first. The termination at the end of cycle can be overridden by a subsegubitp TRUE event.

Any set_startTime events to an active time-dependent node are ignoredserggopTime event wheretopTime <=
startTime sent to an active time-dependent node is also ignored.seAstopTime event where
startTime < stopTime <= now sent to an active time-dependent node results in events being generastobdanie

has just been reached. That is, final events, includinigfstive FALSE, are generated and the node becomes
inactive. ThestopTime_changed event will have theset_stopTime value. Other final events are node-dependent
(c.f., TimeSensor).

A time-dependent node may be restarted while it is active by sendihgt@pTime event equal to the current time
(which will cause the node to become inactive) aset &tartTime event, setting it to the current time or any time in
the future. These events will have the same time stamp and should be procsgsem@Bme, thenset_startTime

to produce the correct behaviour.

The default values for each of the time-dependent nodes are specified such that any node with default values is
already inactive (and, therefore, will generate no events upon loading). A time-dependent node can be defined such
that it will be active upon reading by specifyitmpp TRUE. This use of a non-terminating time-dependent node
should be used with caution since it incurs continuous overhead on the simulation.

Figure 4.2illustrates the behavior of several common cases of time-dependent nodes. In each case, the initial
conditions ofstartTime, sopTime, loop, and the time-dependent node's cycle interval are labelled, the red region
denotes the time period during which the time-dependent node is active, the arrows represent eventins received by
and eventOuts sent by the time-dependent node, and the horizontal axis represents time.

4.6.10 Bindable children nodes

The Background Fog Navigationinfq andViewpoint nodes have the unique behaviour that only one of each type

can be bound (i.e., affecting the user's experience) at any instant in time. The browser shall maintain an independent,
separate stack for each type of bindable node. Each of these nodes incladéma eventln and ansBound

eventOut. Theet_bind eventin is used to move a given node to and from its respective top of stack. A TRUE value
sent to theset_bind eventin moves the node to the top of the stack; sending a FALSE value removes it from the
stack. ThesBound event is output when a given node is:

a. moved to the top of the stack;
b. removed from the top of the stack;
c. pushed down from the top of the stack by another node being placed on top.

That is,isBound events are sent when a given node becomes, or ceases to be, the active node. The node at the top of
stack, (the most recently bound node), is the active node for its type and is used by the browser to set the world state.
If the stack is empty (i.e., either the VRML file has no bindable nodes for a given type or the stack has been popped
until empty), the default field values for that node type are used to set world state. The results are undefined if a
multiply instanced (DEF/USE) bindable node is bound.

40



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

startlime == stoplime, loop FALSE:

stoplime  statTime

isActire TRUE  dsdctive FALSE

startfime »= stopfime, foop TRUE :

stoplime  starTime

isdetive TRUE

startlime < sfopfime, foop TRUE :

st

isdetive TRIUE isdetive FALSE

set stopfime, foop TRUE :
sel stopTime=t,

stoplime st

* t
fsdetse TRUE J'S«ﬂ-cff'l,?e FALSE

leop TRUE, set loap FALSE:

sat foop FALSE
stopline stanTime

isdetive TRUE isdetive FALSE

Figure 4.2 -- Examples of time-dependent node execution

The following rules describe the behaviour of the binding stack for a node of bypdable node>, (Background,
Fog, Navigationinfo, or Viewpoint):

a. During read, the first encounteredindable node> is bound by pushing it to the top of tkéindable
node> stack. Nodes contained withinlnlines within the strings passed to the
Browser.createVrmIFromString() method, or within VRML files passed to the
Browser.createVrmIFromURL() method (sé42.10, Browser script interfaege not candidates for the
first encountered bindable node>. The first node within a prototype instance is a valid candidate for the
first encountered bindable node>. The first encounteredbindable node> sends amnsBound TRUE event.

41



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

b. When aset_bind TRUE event is received by<sbindable node>,

1. Ifitis not on the top of the stack: the current top of stack node seridBaand FALSE event.
The new node is moved to the top of the stack and becomes the currentlxbmndathle node>.
The newxbindable node> (top of stack) sends asBound TRUE event.

2. Ifthe node is already at the top of the stack, this event has no effect.

c. When aset_bind FALSE event is received by<sbindable node> in the stack, it is removed from the stack.
If it was on the top of the stack,

1. it sends amsBound FALSE event;

2. the next node in the stack becomes the currently babiatlable node> (i.e., pop)and issues an
isBound TRUE event.

d. If aset bind FALSE event is received by a node not in the stack, the event is ignorésBaunttl events
are not sent.

e. When a node replaces another node at the top of the statdBdbied TRUE and FALSE eventOuts from
the two nodes are sent simultaneously (i.e., with identical timestamps).

f. If a bound node is deleted, it behaves as if it receisetl Bind FALSE event (see f above).

4.6.11 Texture maps

4.6.11.1 Texture map formats

Four node types specify texture mapsickground ImageTextureMovieTexture andPixelTexture In all cases,

texture maps are defined by 2D images that contain an array of colour values describing the texture. The texture map
values are interpreted differently depending on the number of components in the texture map and the specifics of the
image format. In general, texture maps may be described using one of the following forms:

a. Intendty textures (one-component)
b. Intensity plus alpha opacity textures (two-component)
c. Full RGB textures (three-component)
d. Full RGB plus alpha opacity textures (four-component)
Note that most image formats specify an alpha opacity, not transparency (where alpha = 1 - transparency).

SeeTable 4.5andTable 4.6for a description of how the various texture types are applied.

4.6.11.2 Texture map image for mats

Texture nodes that require support for the PNG (2d®NG]) image format §.5, Background and
6.22, ImageTextujeshall interpret the PNG pixel formats in the following way:

a. Greyscale pixels without alpha or simple transparency are treated as intensity textures.

b. Greyscale pixels with alpha or simple transparency are treated as intensity plus alpha textures.

42



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

c. RGB pixels without alpha channel or simple transparency are treated as full RGB textures.
d. RGB pixels with alpha channel or simple transparency are treated as full RGB plus alpha textures.

If the image specifies colours as indexed-colour (i.e., palettes or colourmaps), the following semantics should |
used (note that "greyscale' refers to a palette entry with equal red, green, and blue values):

a. If all the colours in the palette are greyscale and there is no transparency chunk, it is treated as an inten:
texture.

b. If all the colours in the palette are greyscale and there is a transparency chunk, it is treated as an inten:
plus opacity texture.

c. If any colour in the palette is not grey and there is no transparency chunk, it is treated as a full RGB textur

d. If any colour in the palette is not grey and there is a transparency chunk, it is treated as a full RGB plt
alpha texture.

Texture nodes that require support for JPEG files 2d8®EG] 6.5, Backgroundand6.22, ImageTextudeshall
interpret JPEG files as follows:

i. Greyscale files (number of components equals 1) are treated as intensity textures.
j- YCDCr files are treated as full RGB textures.

k. No other JPEG file types are required. It is recommended that other JPEG files are treated as a full RC
textures.

Texture nodes that support MPEG files (Bd®PEG] and6.28, MovieTextureshall treat MPEG files as full RGB
textures.

Texture nodes that recommend support for GIF files EsgelF], 6.5, Backgroundand6.22, ImageTextujeshall
follow the applicable semantics described above for the PNG format.

a7
~RmLY 8 —

®4.7 Fidd, eventl n, and eventOut semantics

Fields are placed inside node statements in a VRML file, and define the persistent state of the virtual world. Resu
are undefined if multiple values for the same field in the same nodeSplteere { radius 1.0 radius
2.0 }) are declared.

Eventins and eventOuts define the types and names of events that each type of node may receive or generate. E
are transient and event values are not written to VRML files. Each node interprets the values of the events sent t
or generated by it according to its implementation.

Field, eventin, and eventOut types, and field encoding syntax, are describdddld and event reference

An exposedField can receive events like an eventin, can generate events like an eventOut, and can be stored
VRML files like a field. An exposedField namezr can be referred to ast_zzZ and treated as an eventin, and can

be referred to agZz changed and treated as an eventOut. The initial value of an exposedField is its value in the
VRML file, or the default value for the node in which it is contained, if a value is not specified. When an
exposedField receives an event it shall generate an event with the same value and timestamp. The following sour
in precedence order, shall be used to determine the initial value of the exposedField:

43



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

a. the user-defined value in the instantiation (if one is specified);
b. the default value for that field as specified in the node or prototype definition.
The rules for naming fields, exposedFields, eventOuts, and eventins for the built-in nodes are as follows:

c. All names containing multiple words start with a lower case letter, and the first letter of all subsequent
words is capitalized (e.gaddChildren), with the exception ofes_and_changed, as described below.

d. All eventins have the prefixsdt_", with the exception of thaddChildren andremoveChildren eventins.
e. Certain eventlns and eventOuts of type SFTime do not useath&grefix or "_changed" suffix.

f.  All other eventOuts have the suffixchanged" appended, with the exception of eventOuts of type SFBool.
Boolean eventOuts begin with the woid''(e.g.,isFoo) for better readability.

a7 . ™)
meL.-”L_ﬁj/—

®4.8 Prototype semantics

4.8.1 Introduction

The PROTO statement defines a new node type in terms of already defined (built-in or prototyped) node types. Once
defined, prototyped node types may be instantiated in the scene graph exactly like the built-in node types.

Node type names shall be unique in each VRML file. The results are undefined if a prototype is given the same
name as a built-in node type or a previously defined prototype in the same scope.

4.8.2 PROTO interface declar ation semantics

The prototype interface defines the fields, eventins, and eventOuts for the new node type. The interface declaration
includes the types and names for the eventins and eventOuts of the prototype, as well as the types, names, and
default values for the prototype's fields.

The interface declaration may contain exposedField declarations, which are a convenient way of defining a field,
eventln, and eventOut at the same time. If an exposedField mamedeclared, it is equivalent to declaring a field
namedzzz, an eventin namesit zzz, and an eventOut namezy_changed.

Each prototype instance can be considered to be a complete copy of the prototype, with its own fields, events, and
copy of the prototype definition. A prototyped node type is instantiated using standard node syntax. For example,
the following prototype (which has an empty interface declaration):

PROTO Cube [ ] { Box { } }
may be instantiated as follows:
Shape { geonetry Cube { } }

It is recommended that user-defined field or event names defined in PROTO interface declarations statements follow
the naming conventions describedliid, Field, eventin, and eventOut semantics

If an eventOut in the prototype declaration is associated with an exposedField in the prototype definition, the initial
value of the eventOut shall be the initial value of the exposedField. If the eventOut is associated with multiple
exposedFields, the results are undefined.

44



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

4.8.3 PROTO definition semantics

A prototype definition consists of one or more nodes, nested PROTO statements, and ROUTE statements. The f
node type determines how instantiations of the prototype can be used in a VRML file. An instantiation is created
filling in the parameters of the prototype declaration and inserting copies of the first node (and its scene grap
wherever the prototype instantiation occurs. For example, if the first node in the prototype definition is a Materie
node, instantiations of the prototype can be used wherever a Material node can be used. Any other nodes
accompanying scene graphs are not part of the transformation hierarchy, but may be referenced by ROU
statements or Script nodes in the prototype definition.

Nodes in the prototype definition may have their fields, eventins, or eventOuts associated with the fields, eventlir
and eventOuts of the prototype interface declaration. This is accomplished using IS statements in the body of
node. When prototype instances are read from a VRML file, field values for the fields of the prototype interface ma
be given. If given, the field values are used for all nodes in the prototype definition that have IS statements for tho
fields. Similarly, when a prototype instance is sent an event, the event is delivered to all nodes that have
statements for that event. When a node in a prototype instance generates an event that has an IS statement, the
is sent to any eventins connected (via ROUTE) to the prototype instance's eventOut.

IS statements may appear inside the prototype definition wherever fields may appear. IS statements shall refer
fields or events defined in the prototype declaration. Results are undefined if an IS statement refers to a non-exist
declaration. Results are undefined if the type of the field or event being associated by the IS statement does
match the type declared in the prototype's interface declaration. For example, it is illegal to associate an SFCc
with an SFVec3f. It is also illegal to associate an SFColor with an MFColoteorersa.

Results are undefined if an IS statement:

* eventln is associated with a field or an eventOut;
« eventOut is associated with a field or eventln;
+ field is associated with an eventin or eventOut.

An exposedField in the prototype interface may be associated only with an exposedField in the prototype definitio
but an exposedField in the prototype definition may be associated with either a field, eventin, eventOut
exposedField in the prototype interface. When associating an exposedField in a prototype definition with an even
or eventOut in the prototype declaration, it is valid to use either the shorthand exposedField namamgeton)

or the explicit event name (e.get_trandation or trandation_changed). Table 4.4defines the rules for mapping
between the prototype declarations and the primary scene graph'syesdien tes a legal mappingp denotes an
error).

Table 4.4 -- Rulesfor mapping PROTOTY PE declarationsto node instances

Prototype declaration
exposedField field eventin eventOut
exposedField yes yes yes yes
Prototype
field no yes no no
definition
eventin no no yes no
eventOut no no no yes

45



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Results are undefined if a field, eventin, or eventOut of a node in the prototype definition is associated with more
than one field, eventin, or eventOut in the prototype's interface (i.e., multiple IS statements for a field, eventin, and
eventOut in a node in the prototype definition), but multiple IS statements for the fields, eventins, and eventOuts in
the prototype interface declaration is valid. Results are undefined if a field of a node in a prototype definition is both
defined with initial values (i.e., field statement) and associated by an IS statement with a field in the prototype's
interface. If a prototype interface has an event®associated with multiple eventOuts in the prototype definition

ED, , the value oE is the value of the eventOut that generated the event with the greatest timestamp. If two or more
of the eventOuts generated events with identical timestamps, results are undefined.

4.8.4 Prototype scoping rules

Prototype definitions appearing inside a prototype definition (i.e., nested) are local to the enclosing prototype. IS
statements inside a nested prototype's implementation may refer to the prototype declarations of the innermost
prototype.

A PROTO statement establishes a DEF/USE name scope separate from the rest of the scene and separate from any
nested PROTO statements. Nodes given a name by a DEF construct inside the prototype may not be referenced in a
USE construct outside of the prototype's scope. Nodes given a name by a DEF construct outside the prototype scope
may not be referenced in a USE construct inside the prototype scope.

A prototype may be instantiated in a file anywhere after the completion of the prototype definition. A prototype may
not be instantiated inside its own implementation (i.e., recursive prototypes are illegal).

a7
~RmLY 8 —

®4.9 External prototype semantics

4.9.1 Introduction

The EXTERNPROTO statement defines a new node type. It is equivalent to the PROTO statement, with two
exceptions. First, the implementation of the node type is stored externally, either in a VRML file containing an
appropriate PROTO statement or using some other implementation-dependent mechanism. Second, default values
for fields are not given since the implementation will define appropriate defaults.

4.9.2 EXTERNPROTO interface semantics

The semantics of the EXTERNPROTO are exactly the same as for a PROTO statement, except that default field and
exposedField values are not specified locally. In addition, events sent to an instance of an externally prototyped node
may be ignored until the implementation of the node is found.

Until the definition has been loaded, the browser shall determine the initial value of exposedFields using the
following rules (in order of precedence):

a. the user-defined value in the instantiation (if one is specified);
b. the default value for that field type.

For eventOuts, the initial value on startup will be the default value for that field type. During the loading of an
EXTERNPROTO, if an initial value of an eventOut is found, that value is applied to the eventOut and no event is
generated.

46



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

The names and types of the fields, exposedFields, eventins, and eventOuts of the interface declaration shall &
subset of those defined in the implementation. Declaring a field or event with a non-matching name is an error, as
declaring a field or event with a matching name but a different type.

It is recommended that user-defined field or event names defined in EXTERNPROTO interface statements follc
the naming conventions describedtii, Field, eventin, and eventOut semantics

4.9.3 EXTERNPROTO URL semantics

The string or strings specified after the interface declaration give the location of the prototype's implementation.
multiple strings are specified, the browser searches in the order of preferenté.5ddRL 3.

If a URL in an EXTERNPROTO statement refers to a VRML file, the first PROTO statement found in the VRML

file (excluding EXTERNPROTOS) is used to define the external prototype's definition. The name of that prototyp
does not need to match the name given in the EXTERNPROTO statement. Results are undefined if a URL in

EXTERNPROTO statement refers to a non-VRML file

To enable the creation of libraries of reusable PROTO definitions, browsers shall recognize EXTERNPROTO URL

that end with #name" to mean the PROTO statement for "name" in the given VRML file. For example, a library of
standard materials might be stored in a VRML file called "materials.wrl" that looks like:

#VRML V2.0 utf8

PROTO Gold [] { Material { ... } }
PROTO Silver [] { Material { ... } }
...etc.

A material from this library could be used as follows:

#VRML V2.0 utf8
EXTERNPROTO Col dFronLi brary [] "http://.../materials.wl#Gol d"

Shape {
appear ance Appearance { material Gol dFroniibrary {} }
geometry

a7 . ™)
meL.-”L_ﬁj/—

®4.10 Event processing

4.10.1 I ntroduction

Most node types have at least one eventln definition and thus can m@sigeIncoming events are data messages
sent by other nodes to change some state withinetteving node. Some nodes also have eventOut definitions.
These are used to send data messages to destination nodes that some state has changed within the source node

If an eventOut is read before it has sent any eventsnitiad value as specified irb, Field and event referender
each field/event type is returned.

47



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

4.10.2 Route semantics

The connection between the node generating the event and the node receiving the event ioalid&tbates are

not nodes. The ROUTE statement is a construct for establishing event paths between nodes. ROUTE statements may
either appear at the top level of a VRML file, in a prototype definition, or inside a node wherever fields may appear.
Nodes referenced in a ROUTE statement shall be defined before the ROUTE statement.

The types of the eventin and the eventOut shall match exactly. For example, it is illegal to route from an SFFloat to
an SFInt32 or from an SFFloat to an MFFloat.

Routes may be established only from eventOuts to eventins. For convenience, when routing to or from an eventin or
eventOut (or the eventln or eventOut part of an exposedField}ether changed part of the event's name is
optional. If the browser is trying to establish a ROUTE to an eventin naznadd an eventln of that name is not

found, the browser shall then try to establish the ROUTE to the eventln saeimed. Similarly, if establishing a

ROUTE from an eventOut namezr and an eventOut of that name is not found, the browser shall try to establish
the ROUTE fromzzz_changed.

Redundant routing is ignored. If a VRML file repeats a routing path, the second and subsequent identical routes are
ignored. This also applies for routes created dynamically via a scripting language supported by the browser.

4.10.3 Execution model

Once a sensor or Script has generateiditial event, the event is propagated from the eventOut producing the event
along any ROUTEsS to other nodes. These other nodes may respond by generating additional events, continuing until
all routes have been honoured. This process is calledeancascade. All events generated during a given event
cascade are assigned the same timestamp as the initial event, since all are considered to happen instantaneously.

Some sensors generate multiple events simultaneously. Similarly, it is possible that asynchronously generated events
could arrive at the identical time as one or more sensor generated event. In these cases, all events generated are part
of the same initial event cascade and each event has the same timestamp.

After all events of the initial event cascade are honored, post-event processing performs actions stimulated by the
event cascade. The entire sequence of events occuring in a single timestamp are:

a. Perform event cascade evaluation.
b. Call shutdown() on scripts that have receivedt_url events or are being removed from the scene.
c. Send final events from environmental sensors being removed from the transformation hierarchy.

d. Add or remove routes specified eddRoute( ) or deleteRoute( ) from any script execution in the
preceeding event cascade.

e. CalleventsProcessed( ) for scripts that have sent events in the just ended event cascade.
f.  Send initial events from any dynamically created environmental sensors.

g. Callinitialize() of newly loaded script code.

h. If any events were generated from steps 2 through 7, go to step 2 and continue.

Figure 4.3provides a conceptual illustration of the execution model.

48



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

M L 0= S .
Byents Execution
Engine
eventOuts 9
addielete
route

directCiut put
evelts

eventing

Figure 4.3 -- Conceptual execution model

Nodes that contain eventOuts or exposedFields shall produce at most one event per timestamp. If a field
connected to another field via a ROUTE, an implementation shall send only one event per ROUTE per timestar
This also applies to scripts where the rules for determining the appropriate action for sending eventOuts are defir
in 4.12.9.3, Sending eventOuts

D.19, Execution modelprovides an example that demonstrates the execution niagete 4.4illustrates event
processing for a single timestamp in examplB.ih9, Execution model

TouchSensor =—eScript 1 —Script 2
ep ep

Y
Script 3 —Script &
ep

e ScTipt 6 =—fScript 7
ep
Figure 4.4 -- Example D.19, event processing or der

In Figure 4.4 arrows coming out of a script gp are events generated during #wentsProcessed() call for the
script. The other arrows are events sent during an eventin method. One possible compliant order of execution is

follows:
i. User activate3 ouchSensor
j- Runinitial event cascade (step 1)
1. Script 1runs, generates an event &ript 2

2. Script 2runs

49



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

3. end of initial event cascade

k. Execute eventsProcessed calls (step 5)
1. eventsProcessed for Script 1 runs, sends event Seript 3
2. Script 3runs, generates events faript 5

Script 5runs

eventsProcessed for Script 2 runs, sends events $oript 4

o M w

Script 4runs
6. end ofeventsProcessed processing
I. Goto step 2 for generated events (step 8)
m. ExecuteeventsProcessed calls (step 5)
1. eventsProcessed for Script 3runs, sends event Seript 6
2. Script 6runs, sends event Seript 7
3. Script 7runs
4. eventsProcessed for Script 4 runs, does not generate any events
5. eventsProcessed for Script 5 runs, does not generate any events
6. end ofeventsProcessed processing
n. Go to step 2 for generated events (step 8)
0. ExecuteeventsProcessed calls (step 5)
1. eventsProcessed for Script 6 runs, does not generate any events
2. eventsProcessed for Script 7 runs, does not generate any events
3. end ofeventsProcessed processing
p. No more events to handle.
The above is not the only possible compliant order of execution. If mutisProcessed() methods are pending
when step 4 is executed, the order in which these methods is called is not defined. For instance, in the third step of
the example, theventsProcessed method is pending for botBcript 1 andScript 2. The order of execution in this
case is not defined, so executing #ventsProcessed method ofScript 2 before that ofScript 1 would have been
compliant. However, executing theeentsProcessed method forScript 3 before that ofScript 2 would not have

been compliant because any methods made pending during processing must wait until the next iteration of the event
cascade for execution.

4.10.4 L oops

Event cascades may contdoops where an evenk is routed to a node that generates an event that eventually
results inE being generated again. S€&0.3, Execution modefor the loop breaking rule that limits each eventOut

to one event per timestamp. This rule shall also be used to break loops created by cyclic dependencies between
different sensor nodes.

50



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

4.10.5 Fan-in and fan-out

Fan-in occurs when two or more routes write to the same eventin. Events coming into an eventln from differer
eventOuts with the same timestamp shall be processed, but the order of evaluation is implementation dependent.

Fan-out occurs when one eventOut routes to two or more eventins. This results in sending any event generated
the eventOut to all of the eventins.

a7
~RmLY 8 —

®4.11 Time

4.11.1 Introduction

The browser controls the passage of time in a world by causing TimeSensors to generate events as time pas
Specialized browsers or authoring applications may cause time to pass more quickly or slowly than in the real worl
but typically the times generated by TimeSensors will approximate "real" time. A world's creator should make n
assumptions about how often a TimeSensor will generate events but can safely assume that each time e\
generated will have a timestamp greater than any previous time event.

4.11.2 Timeorigin

Time (0.0) is equivalent to 00:00:00 GMT January 1, 1970. Absolute times are specified in SFTime or MFTime
fields as double-precision floating point numbers representing seconds. Negative absolute times are interpreted
happening before 1970.

Processing an event with timestampay only result in generating events with timestamps greater than or equal to
t.

4.11.3 Discrete and continuous changes

ISO/IEC 14772 does not distinguish between discrete events (such as those generated by a TouchSensor) and e
that are the result of sampling a conceptually continuous set of changes (such as the fraction events generated
TimeSensor). An ideal VRML implementation would generate an infinite number of samples for continuous
changes, each of which would be processed infinitely quickly.

Before processing a discrete event, all continuous changes that are occurring at the discrete event's timestamp
behave as if they generate events at that same timestamp.

Beyond the requirements that continuous changes be up-to-date during the processing of discrete changes,
sampling frequency of continuous changes is implementation dependent. Typically a TimeSensor affecting a visit
(or otherwise perceptible) portion of the world will generate events oncégmee, where a frame is a single
rendering of the world or one time-step in a simulation.

51



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

~RmLY 8 —
®4.12 Scripting

4.12.1 I ntroduction

Authors often require that VRML worlds change dynamically in response to user inputs, external events, and the
current state of the world. The proposition "if the vault is currently clédHd the correct combination is entered,

open the vault” illustrates the type of problem which may need addressing. These kinds of decisions are expressed as
Script nodes (se&.40, Scrip) that receive events from other nodes, process them, and send events to other nodes. A
Script node can also keep track of information between subsequent executions (i.e., retaining internal state over
time).

This subclause describes the general mechanisms and semantics of all scripting |amgsag® @tocols. Note that

no scripting language is required by ISO/IEC 14772. Details for two scripting languages are in
annex B, Java platform scripting referenaadannex C, ECMAScript scripting referenaespectively. If either of

these scripting languages are implemented, the Script node implementation shall conform with the definition
described in the corresponding annex.

Event processing is performed by a program or script contained in (or referenced by) the ScriptlrfaeldsThis
program or script may be written in any programming language that the browser supports.

4.12.2 Script execution

A Script node is activated when it receives an event. The browser shall then execute the program in the Script node's
url field (passing the program to an external interpreter if necessary). The program can perform a wide variety of
actions including sending out events (and thereby changing the scene), performing calculations, and communicating
with servers elsewhere on the Internet. A detailed description of the ordering of event processing is contained in
4.10, Event processing

Script nodes may also be executed after they are created.{2e8, Initialize() and shutdown()Some scripting
languages may allow the creation of separate processes from scripts, resulting in continuous execitiéh6(see
Asynchronous scripfs

Script nodes receive events in timestamp order. Any events generated as a result of processing an event are given
timestamps corresponding to the event that generated them. Conceptually, it takes no time for a Script node to
receive and process an event, even though in practice it does take some atiroertbagxecute a Script.

When aset_url event is received by a Script node that contains a script that has been previously initialized for a
different URL, theshutdown() method of the current script is called (de¥2.3, Initialize() and shutdown()Until

the new script becomes available, the script shall behave as though it has no executable content. When the new
script becomes available, thatialize() method is invoked as defined4ril0.3, Execution modeThe limiting case

is when the URL contains inline code that can be immediately executed upon receiptsef thle event

(e.g., javascript: protocol). In this case, it can be assumed that the old code is unloaded and the new code loaded
instantaneously, after any dynamic route requests have been performed.

4.12.3 I nitialize() and shutdown()

The scripting language binding may defineiitialize() method. This method shall be invoked before the browser
presents the world to the user and before any events are processed by any nodes in the same VRML file as the Script
node containing this script. Events generated byiritii@lize() method shall have timestamps less than any other

52



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

events generated by the Script node. This allows script initialization tasks to be performed prior to the us
interacting with the world.

Likewise, the scripting language binding may defirshiidown() method. This method shall be invoked when the
corresponding Script node is deleted or the world containing the Script node is unloaded or replaced by anott
world. This method may be used as a clean-up operation, such as informing external mechanisms to remc
temporary files. No other methods of the script may be invoked aftshutdown() method has completed, though

the shutdown() method may invoke methods or send events while shutting down. Events generated by th
shutdown() method that are routed to nodes that are being deleted by the same action that cahaibwmé)
method to execute will not be delivered. The deletion of the Script node containiswitifieewn() method is not
complete until the execution of shutdown() method is complete.

4.12.4 EventsProcessed()

The scripting language binding may defineesentsProcessed() method that is called after one or more events are
received. This method allows Scripts that do not rely on the order of events received to generate fewer events tt
an equivalent Script that generates events whenever events are received. If it is used in some other time-depen
way, eventsProcessed() may be nondeterministic, since different browser implementations may call
eventsProcessed() at different times.

For a single event cascade, a given Script node's eventsProcessed method shall be called at most once. E
generated from aeventsProcessed() method are given the timestamp of the last event processed.

4.12.5 Scriptswith direct outputs

Scripts that have access to other nodes (via SFNode/MFNode fields or eventins) and that hdivectDetput
field set to TRUE may directly post eventins to those nodes. They may also read the last value sent from any of
node's eventOuts.

When setting a value in another node, implementations are free to either immediately set the value or to defer sett
the value until the Script is finished. When getting a value from another node, the value returned shall be up-to-da
that is, it shall be the value immediately before the time of the current timestamp (the current timestamp returned
the timestamp of the event that caused the Script node to execute).

If multiple directOutput Scripts read from and/or write to the same node, the results are undefined.

4.12.6 Asynchronous scripts

Some languages supported by VRML browsers may allow Script nodes to spontaneously generate events, allow
users to create Script nodes that function like new Sensor nodes. In these cases, the Script is generating the ir
events that causes the event cascade, and the scripting language and/or the browser shall determine an appro
timestamp for that initial event. Such events are then sorted into the event stream and processed like any other ev
following all of the same rules including those for looping.

4.12.7 Script languages

The Script node'sirl field may specify a URL which refers to a file (e.g., using protocol http:) or incorporates
scripting language code directly in-line. The MIME-type of the returned data defines the language type
Additionally, instructions can be included in-line usihé.4, Scripting language protocalefined for the specific
language (from which the language type is inferred).

For example, the following Script node has one eventin field natagdand three different URL values specified
in theurl field: Java, ECMAScript, and inline ECMAScript:

53



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Script {
event |l n SFBool start
url [ "http://foo.comfooBar.class",
"http://foo.com fooBar.js",
"javascript:function start(value, timestanmp) { ... }"
]
}

In the above example wherstart eventin is received by the Script node, one of the scripts found umltfield is

executed. The Java platform bytecode is the first choice, the ECMAScript code is the second choice, and the inline
ECMAScript code the third choice. A description of order of preference for multiple valued URL fields may be
found in4.5.2, URLs

4.12.8 Eventln handling

Events received by the Script node are passed to the appropriate scripting language method in the script. The
method's name depends on the language type used. In some cases, it is identical to the name of the eventin; in
others, it is a general callback method for all eventins (see the scripting language annexes for details). The method is
passed two arguments: the event value and the event timestamp.

4.12.9 Accessing fields and events

The fields, eventins, and eventOuts of a Script node are accessible from scripting language methods. Events can be
routed to eventins of Script nodes and the eventOuts of Script nodes can be routed to eventins of other nodes.
Another Script node with access to this node can access the eventins and eventOuts just like any other node (see
4.12.5, Scripts with direct outpiis

It is recommended that user-defined field or event names defined in Script nodes follow the naming conventions
described im.7, Field, eventin, and eventOut semantics

4.12.9.1 Accessing fields and eventOuts of the script

Fields defined in the Script node are available to the script through a language-specific mechanism (e.g., a variable
is automatically defined for each field and event of the Script node). The field values can be read or written and are
persistent across method calls. EventOuts defined in the Script node may also be read; the returned value is the last
value sent to that eventOut.

4.12.9.2 Accessing eventl ns and eventOuts of other nodes

The script can access any eventin or eventOut of any node to which it has access. The syntax of this mechanism is
language dependent. The following example illustrates how a Script node accesses and modifies an exposed field of
another node (i.e., sendsat trandation eventin to the Transform node) using ECMAScript:

DEF SonmeNode Transform{ }
Script {
field SFNode tnode USE SonmeNode
eventl n SFVec3f pos
di rect Qut put TRUE
url "javascript:
function pos(value, tinestanp) {
tnode. set _transl ati on = val ue;

pr

54



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

The language-dependent mechanism for accessing eventins or eventOuts (or the eventin or eventOut part of
exposedField) shall support accessing them without thseir™ or " changed" prefix or suffix, to match the
ROUTE statement semantics. When accessing an eventin naieahtl an eventin of that name is not found, the
browser shall try to access the eventln nanset 7ZzZ'. Similarly, if accessing an eventOut namedZ" and an

eventOut of that name is not found, the browser shall try to access the eventOutzzaroeantjed”.

4.12.9.3 Sending eventOuts

Each scripting language provides a mechanism for allowing scripts to send a value through an eventOut defined
the Script node. For example, one scripting language may define an explicit method for sending each eventO
while another language may use assignment statements to automatically defined eventOut variables to implici
send the eventOut. Sending multiple values through an eventOut during a single script execution will result in tt
"last" event being sent, where "last” is determined by the semantics of the scripting language being used.

4.12.10 Browser script interface

4.12.10.1 Introduction

The browser interface provides a mechanism for scripts contained by Script nodes to get and set browser st
(e.g., the URL of the current world). This subclause describes the semantics of methods that the browser interfe
supports. An arbitrary syntax is used to define the type of parameters and returned values. The specific annex ft
language contains the actual syntax required. In this abstract syntax, types are given as VRML field types. Mappi
of these types into those of the underlying language (as well as any type conversion needed) is described in
appropriate language annex.

4.12.10.2 SFString getName( ) and SFString getVerson()

The getName() andgetVersion() methods return a string representing the "name" and "version" of the browser
currently in use. These values are defined by the browser writer, and identify the browser in some (unspecified) we
They are not guaranteed to be unique or to adhere to any particular format and are for information only. If tr
information is unavailable these methods return empty strings.

4.12.10.3 SFFloat getCurrentSpeed()
The getCurrentSpeed() method returns the average navigation speed for the currently blawightioninfonode
in meters per second, in the coordinate system of the currently Mewdoint node. If speed of motion is not

meaningful in the current navigation type, or if the speed cannot be determined for some other reason, 0.0
returned.

4.12.10.4 SFFloat getCurrentFrameRate( )
ThegetCurrentFrameRate() method returns the current frame rate in frames per second. The way in which frame

rate is measured and whether or not it is supported at all is browser dependent. If frame rate measurement is
supported or cannot be determined, 0.0 is returned.

4.12.10.5 SFString getWor [dURL ()

ThegetWorldURL () method returns the URL for the root of the currently loaded world.

55



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

4.12.10.6 void replaceWorld( M FNode nodes)

The replaceWorld() method replaces the current world with the world represented by the passed nodes. An
invocation of this method will usually not return since the world containing the running script is being replaced.
Scripts that may call this method shall hawestEvaluate set to TRUE.

4.12.10.7 void loadURL ( MFString url, MFString par ameter )

TheloadURL () method loads the first recognized URL from the speciifi¢dield with the passed parameters. The
parameter andurl arguments are treated identically to the Anchor nqueaEmeter andurl fields (see.2, Anchoy.

This method returns immediately. However, if the URL is loaded into this browser window (e.g., there is no
TARGET parameter to redirect it to another frame), the current world will be terminated and replaced with the data
from the specified URL at some time in the future. Scripts that may call this method smalkt&stluate to

TRUE. IfloadUr () is invoked with a URL of the form "#name", the Viewpoint node with the given name ("name")

in the Script' node's run-time name scope(s) shall be bound. However, if the Script node containing the script that
invokesloadURL (" #name") is not part of any run-time name scope or is part of more than one run-time name
scope, results are undefined. 8e€6, Run-time name scqger a description of run-time name scope.

4.12.10.8 void setDescription( SFString description )

The setDescription() method sets the passed string as the current description. This message is displayed in a
browser dependent manner. An empty string clears the current description. Scripts that call this method shall have
mustEvaluate set to TRUE.

4.12.10.9 MFNode cr eateVrmlIFromString( SFString vr miSyntax )

ThecreateVrmlFromString() method parses a string consisting of VRML statements, establishes any PROTO and
EXTERNPROTO declarations and routes, and returns an MFNode value containing the set of nodes in those
statements. The string shall be self-contained (i.e., USE statements inside the string may refer only to nodes DEF'ed
in the string, and non-built-in node types used by the string shall be prototyped using EXTERNPROTO or PROTO
statements inside the string).

4.12.10.10 void createVrmIFromURL ( MFString url, SFNode node, SFString event )

ThecreateVrmlIFromURL () instructs the browser to load a VRML scene description from the given URL or URLSs.
The VRML file referred to shall be self-contained (i.e., USE statements inside the string may refer only to nodes
DEF'ed in the string, and non-built-in node types used by the string shall be prototyped using EXTERNPROTO or
PROTO statements inside the string). After the scene is loadsd,is sent to the passemde returning the root

nodes of the corresponding VRML scene. &t parameter contains a string naming an MFNode eventin on the
passed node.

4.12.10.11 void addRoute(...) and void deleteRoute(...)

void addRoute( SFNode fromNode, SFString fromEventOut,
SFNode toNode, SFString toEventin );

void deleteRoute( SFNode fromNode, SFString fromEventOut,
SFNode toNode, SFString toEventin );

These methods respectively add and delete a route between the given event names for the given nodes. Scripts that
call this method shall hawdirectOutput set to TRUE. Routes that are added and deleted shall obey the execution
order defined irt.10.3, Execution model

56



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

~RmLY 8 —
®4.13 Navigation

4.13.1 Introduction

Conceptually speaking, every VRML world containgewpoint from which the world is currently being viewed.
Navigation is the action taken by the user to change the position and/or orientation of this viewpoint thereb
changing the user's view. This allows the user to move through a world or examine an object. The Navigationln
node (seé.29, NavigationInfp specifies the characteristics of the desired navigation behaviour, but the exact usel
interface is browser-dependent. The Viewpoint node §s&& Viewpoin} specifies key locations and orientations

in the world to which the user may be moved via scripts or browser-specific user interfaces.

4.13.2 Navigation paradigms

The browser may allow the user to modify the location and orientation of the viewer in the virtual world using &
navigation paradigm. Many different navigation paradigms are possible, depending on the nature of the virtual wor
and the task the user wishes to perform. For instance, a walking paradigm would be appropriate in an architectt
walkthrough application, while a flying paradigm might be better in an application exploring interstellar space.
Examination is another common use for VRML, where the world is considered to be a single object which the us
wishes to view from many angles and distances.

The Navigationinfo node hastgpe field that specifies the navigation paradigm for this world. The actual user
interface provided to accomplish this navigation is browser-depender@.2Se@&lavigationInfpfor details.

4.13.3 Viewing model

The browser controls the location and orientation of the viewer in the world, based on input from the user (using tl
browser-provided navigation paradigm) and the motion of the currently bound Viewpoint node (and its coordinat
system). The VRML author can place any number of viewpoints in the world at important places from which th
user might wish to view the world. Each viewpoint is described Wgwapoint node. Viewpoint nodes exist in their
parent's coordinate system, and both the viewpoint and the coordinate system may be changed to affect the viev
the world presented by the browser. Only one viewpoint is bound at a time. A detailed description of how th
Viewpoint node operates is describedtifi.10, Bindable children nodemnd6.53, Viewpoint

Navigation is performed relative to the Viewpoint's location and does not affect the location and orientation value
of a Viewpoint node. The location of the viewer may be determined with a ProximitySensor node (set
6.38, ProximitySensor

4.13.4 Collision detection and terrain following

A VRML file can contain Collision nodes (sée8, Collisior) and Navigationinfo nodes that influence the browser's
navigation paradigm. The browser is responsible for detecting collisions between the viewer and the objects in t
virtual world, and is also responsible for adjusting the viewer's location when a collision occurs. Browsers shall n
disable collision detection except for the special cases listed below. Collision nodes can be used to generate ev
when viewer and objects collide, and can be used to designate that certain objects should be treated as transpare
collisions. Support for inter-object collision is not specified. The Navigationinfo types of WALK, FLY, and NONE
shall strictly support collision detection. However, the Navigationinfo tyi¢¥ and EXAMINE may temporarily
disable collision detection during navigation, but shall not disable collision detection during the normal execution c
the world. Se®.29, NavigationInfpfor details on the various navigation types.

57



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Navigationinfo nodes can be used to specify certain parameters often used by browser navigation paradigms. The
size and shape of the viewer's avatar determines how close the avatar may be to an object before a collision is
considered to take place. These parameters can also be used to imf@eaiarfollowing by keeping the avatar a

certain distance above the ground. They can additionally be used to determine how short an object must be for the
viewer to automatically step up onto it instead of colliding with it.

\.IF!.I'I'II_W@—

®4.14 Lighting model

4.14.1 I ntroduction

The VRML lighting model provides detailed equations which define the colours to apply to each geometric object.
For each object, the values of the Material node, Color node and texture currently being applied to the object are
combined with the lights illuminating the object and the currently bound Fog node. These equations are designed to
simulate the physical properties of light striking a surface.

4.14.2 Lighting 'off’
A Shape node is unlit if either of the following is true:
a. The shape'appearance field is NULL (default).
b. Thematerial field in the Appearance node is NULL (default).

xNote the special cases of geometry nodes that do not support lighting.@edndexedLineSetand
6.36, PointSetfor details).

If the shape is unlit, the colour ) and alpha (A, 1-transparency) of the shape at each point on the shape's geometry
is given inTable 4.5

Table 4.5 -- Unlit colour and alpha mapping

Colour per-vertex

(one-component)

A=1

Texturetype o per-face Colour NULL
No texture 'rg'&::'igb lrgp= (i, 1,1)
IntenSity Irgb= IT x ICrgb Irgb = (ITaITaIT)

A=1

Intensity+Alpha lrgo= 1 X lcrgn ligp= (I, 17,17)
(two-component) A=A; A=A;
RGB Irgb= ITrgb Ifgb: ITTQb
(three-component) A=1 A=1
RGBA Irgb= ITrgb Irgb= ITrgb
(four-component) A=Ar A=A;

58




Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

where:
Ar = normalized [0, 1] alpha value from 2 or 4 component texture image
lcrge = interpolated per-vertex colour, or per-face colour, from Color node

I+ = normalized [0, 1] intensity from 1 or 2 component texture image
IT.q= colour from 3-4 component texture image

4.14.3 Lighting 'on’

If the shape is lit (i.e., a Material and an Appearance node are specified for the Shape), the Color and Texture no
determine the diffuse colour for the lighting equation as specifiédlite 4.6

Table 4.6 -- Lit colour and alpha mapping

Colour per-vertex
Texturetype or per-face Color node NULL
ODrgb = ICrgb <:)Drgb = IDrgb
No texture A=z 1T, A=z 1T,
Intensity texture Obrg = It % lorgp Obrgr = It % lpigp
(one-component) A=1-Ty A=1-Ty
Intensity+Alpha texture Obigr = It X lerg Obrgr = It % lpigp
(two-component) A=A A=A
RGB texture ODrgb = ITrgb ODrgb = ITrgb
(three-component) A=1-Ty A=1-Ty
RGBA texture ODrgb = ITrgb ODrgb = ITrgb
(four-component) A=Ar A=A;

where:

lorgy = materialdiffuseColor

Obrg = diffuse factor, used in lighting equations below
Tw = materialtransparency

All other terms are as defined4nl4.2, Lighting ~off'

4.14.4 Lighting equations

An ideal VRML implementation will evaluate the following lighting equation at each point on a lit surface. RGB
intensities at each point on a geometyy)(hre given by:

ligo = lrrgp X (1 -To) + fo X (Ogrgp + SUM( 0n x attenuationx spof X 1 4
x (ambient+ diffuseg + speculay)))

where:

59



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

attenuation= 1/ max(¢+ Gx d. + X% d &sr2 1 )
ambient= lia X Opgy X Oy

diffuse = I, X Opg X (N e L)

specu|ar: I x o&gb X (N . ((|_ + V) / ||_ + Vl))shininess><128

and:
» = modified vector dot product: if dot product < 0, then 0.0, otherwise, dot product

C1, G, C3 = light i attenuation

dy = distance from point on geometry to viewer’s position, in coordinate system of current fog node
d. = distance from light to point on geometry, in light’s coordinate system

fo = Fog interpolant, see Table 4.8 for calculation

Irgo = currently bound fog's color

I Lrgp = light i color

l; = light i intensity

lia = light i ambientintensity

L = (Point/SpotLight) normalized vector from point on geometry to light source i position
L = (DirectionalLight) -direction of light sourcei

N = normalized normal vector at this point on geometry (interpolated from vertex normals specified in Normal
node or calculated by browser)

O, = Material ambientintensity

Obgp = diffuse colour, from Material node, Color node, and/or texture node

Ok = Material emissiveColor

Os g, = Material specularColor

on; = 1, if light sourcei affectsthis point on the geometry,

0, if light source i does not affect this geometry (if farther away than radiusfor PointLight or SootLight, outside
of enclosing Group/Transformfor DirectionalLights, or onfield is FALSE)

shininess = Material shininess

spotAngle = acos( -L » spot D r;)

spot gw = SpotLight i beamWidth

pot co = FPotLight i cutOffAngle

spot; = spotlight factor, see Table 4.7 for calculation

spot D ri = normalized SpotLight i direction

SUM: sumover all light sourcesi

V= normalized vector from point on geometry to viewer’s position

Table 4.7 -- Calculation of the spotlight factor

[ |
Condition (in order) spot; =

light; is PointLight or DirectionalLight I 1

e
|spotAngIe >=speb I 0

=" "
HspotAngle <= spety ﬂ 1

(spotAngle - speb ) / (SPOkw-SPOto)

1 — — ) e— ) S— —

Spokw < spotAngle < spal I
—

60



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Table 4.8 -- Calculation of the fog inter polant

H Condition

no fog

B
HfogType "LINEAR", d, < fogVisibility (fogVisibility-dy) / fogVisibility

fogType "LINEAR", d, > fogVisibility 0

N
HfogType "EXPONENTIAL", d < fogVisibility exp(-d, / (fogVisibility-dy ) )

I — — S— — ) S— —
1 — — ) S— — ) S—

fogType "EXPONENTIAL", d > fogVisibility 0
i
4.14.5 References
The VRML lighting equations are based on the simple illumination equations given in E.[ FOLE] and E.[ OPEN].

mnmuf@—

61



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

5 Field and event reference

\.IF!.I'I'II_HTL_@—

@5.1 Introduction

5.1.1 Table of contents

5.1Introduction
5.1.1Table of contents
5.1.2Description
5.2SFBool
5.3SFColor and MFColor
5.4 SFFloat and MFFloat
5.5SFImage
5.6 SFInt32 and MFInt32
5.7 SFNode and MFNode
5.8 SFRotation and MFRotation
5.9 SFString and MFEString
5.10SFTime and MFTime
5.11SFVec2f and MFVec2f
5.12SFVec3f and MFVec3f

5.1.2 Description

This clause describes the syntax and general semanfieklsfindevents, the elemental data types used by VRML
nodes to define objects (séeNode referenge Nodes are composed of fields and events 4se@oncepts The
types defined in this annex are used by both fields and events.

There are two general classes of fields and events: fields and events that contain a single value (where a value may
be a single number, a vector, or even an image), and fields and events that contain an ordered list of multiple values.
Single-valued fields and events have names that beginSkitivultiple-valued fields and events have names that

begin withMF.

Multiple-valued fields/events are written as an ordered list of values enclosed in square brackets and separated by
whitespace. If the field or event has zero values, only the square brackets ("[]") are written. The last value may
optionally be followed by whitespace. If the field has exactly one value, the brackets may be omitted. For example,
all of the following are valid for a multiple-valued MFInt32 field nanfi@alcontaining the single integer value 1:

foo 1
foo [1,]
foo [ 1]

62



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

\.IF!.I'I'II_HTL_@—

@5.2 SFBool

The SFBool field or event specifies a single boolean value. SFBools are written as TRUE or FALSE. For example,
f ooBool FALSE
is an SFBool fieldfooBool, defining a FALSE value.

The initial value of an SFBool eventOut is FALSE.

\.IF!.I'I'II_HT{@—
@®5.3 SFColor and M FColor

The SFColor field or event specifies one RGB (red-green-blue) colour triple. MFColor specifies zero or more RGI
triples. Each colour is written to the VRML file as an RGB triple of floating point numbers in ISO C floating point
format (se.[ISOC)) in the range 0.0 to 1.0. For example:

fooColor [ 1.0 0. 0.0, 010, 00 1]
is an MFColor fieldfooColor, containing the three primary colours red, green, and blue.

The initial value of an SFColor eventOut is (0 0 0). The initial value of an MFColor eventOut is [ ].

\.IF!.I'I'II_HTL_@—
@®5.4 SFF|oat and M FFloat

The SFFloat field or event specifies one single-precision floating point number. MFFloat specifies zero or mor
single-precision floating point numbers. SFFloats and MFFloats are written to the VRML file in ISO C floating
point format (se@.[ISOC)). For example:

fooFl oat [ 3.1415926, 12.5e-3, .0001 ]
is an MFFloat fieldfooFloat, containing three floating point values.

The initial value of an SFFloat eventOut is 0.0. The initial value of an MFFloat eventOut is [ ].

\.IF!.I'I'II_HTL_@—
@55 SFImage

The SFImage field or event specifies a single uncompressed 2-dimensional pixel image. SFImage fields and eve
are written to the VRML file as three integers representing the width, height and number of components in tt
image, followed by width*height hexadecimal or integer values representing the pixels in the image, separated |
whitespace:

f ool mage <wi dt h> <hei ght > <num conponent s> <pi xel s val ues>

63



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Pixel values are limited to 256 levels of intensity (i.e., 0-255 decimal or 0x00-OxFF hexadecimal). A one-component
image specifies one-byte hexadecimal or integer values representing the intensity of the image. ForOsofimple,

is full intensity in hexadecimal (255 in decimalx00 is no intensity (O in decimal). A two-component image
specifies the intensity in the first (high) byte and the alpha opacity in the second (low) byte. Pixels in a three-
component image specify the red component in the first (high) byte, followed by the green and blue components
(e.g.,0xFF0O00O is red, 0xO0FFOO is green,0x0000FF is blue). Four-component images specify the alpha
opacity byte after red/green/blue (e@x0000FF80 is semi-transparent blue). A value @t00 is completely
transparent, OXFF is completely opaque. Note that alpha equals (1.0 - transparency), if alpha and transparency range
from 0.0 to 1.0.

Each pixel is read as a single unsigned number. For example, a 3-component pixel witx @98L@FF may also
be written a®)xFF (hexadecimal) o255 (decimal). Pixels are specified from left to right, bottom to top. The first
hexadecimal value is the lower left pixel and the last value is the upper right pixel.

For example,
foolmage 1 2 1 OxFF 0x00

is a 1 pixel wide by 2 pixel high one-component (i.e., greyscale) image, with the bottom pixel white and the top
pixel black. As another example,

fool mage 2 4 3 OxFFOO00 OxFFOO O O O O OxFFFFFF OxFFFFOO
# red green black.. white yel | ow
is a 2 pixel wide by 4 pixel high RGB image, with the bottom left pixel red, the bottom right pixel green, the two
middle rows of pixels black, the top left pixel white, and the top right pixel yellow.

The initial value of an SFImage eventOut is (0 0 0).

\.IF!.I'I'II_HT{@—
@®5.6 SFInt32 and M FInt32

The SFInt32 field and event specifies one 32-bit integer. The MFInt32 field and event specifies zero or more 32-bit
integers. SFInt32 and MFInt32 fields and events are written to the VRML file as an integer in decimal or
hexadecimal (beginning with '0Ox’) format. For example:

foolnt32 [ 17, -0xE20, -518820 ]
is an MFInt32 field containing three values.

The initial value of an SFInt32 eventOut is 0. The initial value of an MFInt32 eventOut is [ ].

\.IF!.I'I'II_HTL_@—
@®5.7 SFNode and M FNode

The SFNode field and event specifies a VRML node. The MFNode field and event specifies zero or more nodes.
The following example illustrates valid syntax forRNode field,fooNode, defining four nodes:

64



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

fooNode [ Transform{ translation 1 0 0 }
DEF CUBE Box { }
USE CUBE
USE SOVE_OTHER _NODE ]

The SFNode field and event may contain the keyword NULL to indicate that it is empty.

The initial value of an SFNode eventOut is NULL. The initial value of an MFNode eventOut is [ ].

\.IF!.I'I'II_HTL_@—
@®5.8 SFRotation and M FRotation

The SFRotation field and event specifies one arbitrary rotation. The MFRotation field and event specifies zero
more arbitrary rotations. An SFRotation is written to the VRML file as four 1SO C floating point values (see
2.[ISOC) separated by whitespace. The first three values specify a normalized rotation axis vector about which tl
rotation takes place. The fourth value specifies the amount of right-handed rotation about that axis in radians. F
example, an SFRotation containing a Pl radians rotation about the Y axis is:

fooRot 0.0 1.0 0.0 3.14159265

The 3x3 matrix representation of a rotation (x y z a) is

[ tx*+c txy+sz txz-sy
txy-sz  ty?+c tyz+sx
txz+sy  tyz-sx tz2+c |

where ¢ = cos(a), s =sin(a), andt = 1-c
The initial value of an SFRotation eventOut is (0 0 1 0). The initial value of an MFRotation eventOut is [ ].

\.IF!.I'I'II_HTL_@—
®5.9 SFString and MFString

The SFString and MFString fields and events contain strings formatted with the UTF-8 universal character set (S
2.[UTF8]). SFString specifies a single string. The MFString specifies zero or more strings. Strings are written to th
VRML file as a sequence of UTF-8 octets enclosed in double quotes' &.gi, ng" ).

Any characters (including linefeeds and '#) may appear within the quotes. A double quote character within the stril
is preceded with a backslash. A backslash character within the string is also preceded with a backslash forming t
backslashes. For example:

fooString [ "One, Two, Three", "He said, \"Imel did it!\"" ]
is an MFString fieldfooString, with two valid strings.

The initial value of an SFString eventOut is "™ (the empty string). The initial value of an MFString eventOut is [ ].

65



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—

@510 SFTimeand MFTime

The SFTime field or event specifies a single time value. The MFTime field or event specifies zero or more time
values. Time values are written to the VRML file as a double-precision floating point number in ISO C floating
point format (se€.[ISOC). Time values are specified as the number of seconds from a specific time origin.
Typically, SFTime fields and events represent the number of seconds since Jan 1, 1970, 00:00:00 GMT. For
example:

fooTime 0.0
is an SFTime fieldfooTime, representing a time of 0.0 seconds.

The initial value of an SFTime eventOut is -1. The initial value of an MFTime eventOut is [ ].

\.IF!.I'I'II_HT{@—

@511 SFVec2f and M FVec2f

The SFVec?2f field or event specifies a two-dimensional (2D) vector. An MFVec2f field or event specifies zero or
more 2D vectors. SFVec2f's and MFVec2f's are written to the VRML file as a pair of ISO C floating point values
(see2.[ISOC) separated by whitespace. For example:

fooVec2f [ 42 666, 7 94 ]
is an MFVec2f field fooVec2f, with two valid vectors.

The initial value of an SFVec2f eventOut is (0 0). The initial value of an MFVec2f eventOut is [ ].

\.IF!.I'I'II_HT{@—
@®5.12 SFVec3f and M FVec3f

The SFVec3f field or event specifies a three-dimensional (3D) vector. An MFVec3f field or event specifies zero or
more 3D vectors. SFVec3f's and MFVec3f's are written to the VRML file as three 1SO C floating point values (see
2.[ISOC) separated by whitespace. For example:

fooVec3f [ 1 42 666, 7 94 0 ]
is an MFVec3f field fooVec3f, with two valid vectors.

The initial value of an SFVec3f eventOut is (0 0 0). The initial value of an MFVec3f eventOut is [ ].

\.IF!.I'I'II_HTL_@—

66



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

6 Nodereference

\.IF!.I'I'II_HTL_@—

@®6.1 Introduction

This clause provides a detailed definition of the syntax and semantics of each node in this part of ISO/IEC 1477
Table 6.1lists the topics in this clause.

Table 6.1 -- Table of contents

6.1 Introduction 6.20 FontStyle 6.39 Scalarinterpolator
6.2 Anchor 6.21 Group 6.40 Script

6.3 Appearance 6.22 ImageTexture 6.41 Shape

6.4 AudioClip 6.23 IndexedFaceSet 6.42 Sound

6.5 Background 6.24 IndexedLineSet 6.43 Sphere

6.6 Billboard 6.25 Inline 6.44 SphereSensor
6.7 Box 6.26 LOD 6.45 SpotLight

6.8 Collision 6.27 Material 6.46 Switch

6.9 Color 6.28 MovieTexture 6.47 Text

6.10 ColorInterpolator 6.29 Navigationlnfo 6.48 TextureCoordinate
6.11 Cone 6.30 Normal 6.49 TextureTransform
6.12 Coordinate 6.31 Normallnterpolator 6.50 TimeSensor

6.13 Coordinatelnterpolator 6.32 OrientationInterpolator 6.51 TouchSensor
6.14 Cylinder 6.33 PixelTexture 6.52 Transform

6.15 CylinderSensor 6.34 PlaneSensor 6.53 Viewpoint

6.16 DirectionalLight 6.35 PointLight 6.54 VisibilitySensor
6.17 ElevationGrid 6.36 PointSet 6.55 WorldInfo

6.18 Extrusion 6.37 PositionInterpolator

6.19 Fog 6.38 ProximitySensor

In this clause, the first item in each subclause presents the public declaration for the node. This syntax is not
actual UTF-8 encoding syntax. The parts of the interface that are identical to the UTF-8 encoding syntatdare in
The node declaration defines the names and types of the fields and events for the node, as well as the default va
for the fields.

The node declarations also include value ranges for the node's fields and exposedFields (where appropria
Parentheses imply that the range bound is exclusive, while brackets imply that the range value is inclusive. F
example, a range ofog; 1] defines the lower bound as exclusively and the upper bound as 1 inclusively.

For example, the following defines the Collision node declaration:

Coll'ision {
eventln M-Node addChi | dren
eventln M-Node renoveChi | dren
exposedFi el d MFNode  children []
exposedFi el d SFBool col lide TRUE
field SFVec3f bboxCenter 0 0 O # (- o0, )
field SFVec3f bboxSi ze -1 -1-1 # (0, © or -1,-1,-1
field SFNode pr oxy NULL
event Qut SFTi ne col l'i deTi ne
}

67



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The fields and events contained within the node declarations are ordered as follows:
e. eventlns, in alphabetical order;
f. exposedFields, in alphabetical order;
g. fields, in alphabetical order;

h. eventOuts, in alphabetical order.

'\.IF!H'!L..-‘”{

.
G e

®6.2 Anchor

Anchor {
eventln MFNode addChi | dren
eventln M-Node renoveChi |l dren

exposedFi el d M-Node children
exposedFi el d SFString description

exposedFi el d MFString paraneter [1

exposedField MFString url [

field SFVec3f bboxCenter 00O # (- 00, )

field SFVec3f bboxSi ze -1 -1-1 # (0,0 or -1,-1,-1

}

The Anchor grouping node retrieves the content of a URL when the user activates (e.g., clicks) some geometry
contained within the Anchor node's children. If the URL points to a valid VRML file, that world replaces the world

of which the Anchor node is a part (except wherptirameter field, described below, alters this behaviour). If non-
VRML data is retrieved, the browser shall determine how to handle that data; typically, it will be passed to an
appropriate non-VRML browser.

Exactly how a user activates geometry contained by the Anchor node depends on the pointing device and is
determined by the VRML browser. Typically, clicking with the pointing device will result in the new scene
replacing the current scene. An Anchor node with an emptygloes nothing when its children are chosen. A
description of how multiple Anchors and pointing-device sensors are resolved on activation is contained in
4.6.7, Sensor nodes

More details on thehildren, addChildren, andremoveChildren fields and eventins can be founddirs.5, Grouping
and children nodes

The decription field in the Anchor node specifies a textual description of the Anchor node. This may be used by
browser-specific user interfaces that wish to present users with more detailed information about the Anchor.

The parameter exposed field may be used to supply any additional information to be interpreted by the browser.
Each string shall consist of "keyword=value" pairs. For example, some browsers allow the specification of a 'target’
for a link to display a link in another part of an HTML document. par@ameter field is then:

Anchor {
paraneter [ "target=name_of frane" ]

}

An Anchor node may be used to bind the initéwpoint node in a world by specifying a URL ending with
"#ViewpointName" where "ViewpointName" is the name of a viewpoint defined in the VRML file. For example:

68



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Anchor {
url "http://ww. school . edu/vrm /someScene. w | #COver Vi ew'
children Shape { geonetry Box {} }

}

specifies an anchor that loads the VRML file "someScene.wrl" and binds the initial user view to the Viewpoint nod
named "OverView" when the Anchor node's geometry (Box) is activated. If the named Viewpoint node is not foun
in the VRML file, the VRML file is loaded using the default Viewpoint node binding stack rules6(58g

Viewpoint).

If the url field is specified in the form "#ViewpointName" (i.e. no file name), the Viewpoint node with the given
name ("ViewpointName") in the Anchor's run-time name scope(s) shall be metriinfl TRUE). The results are
undefined if there are multiple Viewpoints with the same name in the Anchor's run-time name scope(s). The resu
are undefined if the Anchor node is not part of any run-time name scope or is part of more than one run-time nai
scope. Sed.4.6, Run-time name scqpfr a description of run-time name scopes. 6&8, Viewpoint for the
Viewpoint transition rules that specify how browsers shall interpret the transition from the old Viewpoint node to the
new one. For example:

Anchor {

url "#Doorway"

chil dren Shape { geonetry Sphere {} }
}

binds the viewer to the viewpoint defined by the "Doorway" viewpoint in the current world when the sphere is
activated. In this case, if the Viewpoint is not found, no action occurs on activation.

More details on therl field are contained 4.5, VRML and the World Wide Web

The bboxCenter andbboxSze fields specify a bounding box that encloses the Anchor's children. This is a hint that
may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than t
actual bounding box of the children at any time. The defshdxSze value, (-1, -1, -1), implies that the bounding

box is not specified and if needed shall be calculated by the browser. More detailbloox@eater andbboxSze

fields can be found id.6.4, Bounding boxes

\.IF!.I'I'II_HTL_@—
®6.3 Appearance
Appear ance {
exposedFi el d SFNode materi al NULL
exposedFi el d SFNode texture NULL
exposedFi el d SFNode textureTransform NULL

}

The Appearance node specifies the visual properties of geometry. The value for each of the fields in this node
be NULL. However, if the field is non-NULL, it shall contain one node of the appropriate type.

Thematerial field, if specified, shall contain laterial node. If thematerial field is NULL or unspecified, lighting
is off (all lights are ignored during rendering of the object that references this Appearance) and the unlit obje
colour is (1, 1, 1). Details of the VRML lighting model aretia4, Lighting model

Thetexture field, if specified, shall contain one of the various types of texture nbdegéTextureMovieTexture
or PixelTexturd. If the texture node is NULL or thexture field is unspecified, the object that references this
Appearance is not textured.

69



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

ThetextureTransformfield, if specified, shall contain BextureTransfornmode. If thetextureTransform is NULL or
unspecified, théextureTransform field has no effect.

wmmu‘rﬂ_ﬁ}—
®6.4 AudioClip
Audi odip {
exposedFi el d SFString description "
exposedFi el d SFBool | oop FALSE
exposedField SFFloat pitch 1.0 # (0, )
exposedField SFTime  startTine 0 # (-0, o)
exposedField SFTime  stopTine 0 # (-0, o)
exposedFi el d MFString url [1
event Qut SFTi ne dur ati on_changed
event Qut SFBool i SActive

}
An AudioClip node specifies audio data that can be referenc8dunydnodes.

The description field specifies a textual description of the audio source. A browser is not required to display the
description field but may choose to do so in addition to playing the sound.

Theurl field specifies the URL from which the sound is loaded. Browsers shall support at lesstdtile format

in uncompressed PCM format (SBdWAV]). It is recommended that browsers also support the MIDI file type 1
sound format (see.[MIDI]); MIDI files are presumed to use the General MIDI patch set. Subclause
4.5, VRML and the World Wide Welrontains details on tharl field. The results are undefined when no URLs
refer to supported data types

The loop, startTime, and stopTime exposedFields and theActive eventOut, and their effects on the AudioClip
node, are discussed in detail4r6.9, Time-dependent nodekhe 'tycle" of an AudioClip is the length of time in
seconds for one playing of the audio at the specitzth.

Thepitch field specifies a multiplier for the rate at which sampled sound is played. Values fackhigeld shall be
greater than zer&changing theitch field affects both the pitch and playback speed of a souset. gitch event to

an active AudioClip is ignored and pdch_changed eventOut is generated.pitch is set to 2.0, the sound shall be
played one octave higher than normal and played twice as fast. For a sampled sopiich fredd alters the
sampling rate at which the sound is played. The proper implementation of pitch control for MIDI (or other note
sequence sound clips) is to multiply the tempo of the playback hyttihevalue and adjust the MIDI Coarse Tune

and Fine Tune controls to achieve the proper pitch change.

A duration_changed event is sent whenever there is a new value for the "normal” duration of the clip. Typically, this
will only occur when the currentrl in use changes and the sound data has been loaded, indicating that the clip is
playing a different sound source. The duration is the length of time in seconds for one cycle of the auilichfor a

set to 1.0. Changing thtch field will not trigger aduration_changed event. A duration value of "-1" implies that

the sound data has not yet loaded or the value is unavailable for some redsoatiof_changed event shall be
generated if the AudioClip node is loaded when the VRML file is read or the AudioClip node is added to the scene
graph.

The isActive eventOut may be used by other nodes to determine if the clip is currently active. If an AudioClip is

active, it shall be playing the sound corresponding to the sound time (i.e., in the sound's local time system with
sample 0 at time 0):

t = (now - startTime) nodulo (duration / pitch)

70



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

a7 . ™)
meL.-”L_ﬁj/—

@6.5 Background

Background {
eventln SFBool set _bind
exposedFi el d MFFl oat groundAngle [
exposedFi el d MCol or groundCol or [
exposedFi el d MFString backUrl [
exposedFi el d MFString bottonrl [
exposedField MFString frontUrl [
exposedField MFString leftUrl [
exposedField MFString rightUrl [
exposedField MFString topUrl [
exposedFi el d MFFl oat skyAngl e [
exposedFi el d MFCol or skyCol or 0
event Qut SFBool i sBound

}

The Background node is used to specify a colour backdrop that simulates ground and sky, as well as a backgrol
texture, ompanorama, that is placed behind all geometry in the scene and in front of the ground and sky. Backgrount
nodes are specified in the local coordinate system and are affected by the accumulated rotation of their ancestor
described below.

# [0,
00 #[0,1]

Background nodes are bindable nodes as describ&®.it0, Bindable children nodeshere exists a Background
stack, in which the top-most Background on the stack is the currently active Background. To move a Background
the top of the stack, a TRUE value is sent tostiebind eventin. Once active, the Background is then bound to the
browsers view. A FALSE value sent $a&_bind removes the Background from the stack and unbinds it from the
browser's view. More detail on the bind stack is describddbii0, Bindable children nodes

The backdrop is conceptually a partial sphere (the ground) enclosed inside of a full sphere (the sky) in the loc
coordinate system with the viewer placed at the centre of the spheres. Both spheres have infinite radius and eac
painted with concentric circles of interpolated colour perpendicular to the local Y-axis of the sphere. The
Background node is subject to the accumulated rotations of its ancestors' transformations. Scaling and translat
transformations are ignored. The sky sphere is always slightly farther away from the viewer than the ground parti
sphere causing the ground to appear in front of the sky where they overlap.

TheskyColor field specifies the colour of the sky at various angles on the sky sphere. The first valuskgEohar

field specifies the colour of the sky at 0.0 radians representing the zenith (i.e., straight up from the viewer). TF
skyAngle field specifies the angles from the zenith in which concentric circles of colour appear. The zenith of the
sphere is implicitly defined to be 0.0 radians, the natural horizonmi? aadians, and the nadir (i.e., straight down
from the viewer) is att radiansskyAngle is restricted to non-decreasing values in the rangaq0There shall be

one moreskyColor value than there akyAngle values. The first colour value is the colour at the zenith, which is
not specified in thekyAngle field. If the lastskyAngle is less thami, then the colour band between the gkgfngle

and the nadir is clamped to the ldgtColor. The sky colour is linearly interpolated between the specikg@olor

values.

ThegroundColor field specifies the colour of the ground at the various angles on the ground partial sphere. The firs
value of thegroundColor field specifies the colour of the ground at 0.0 radians representing the nadir (i.e., straight
down from the user). ThgroundAngle field specifies the angles from the nadir that the concentric circles of colour
appear. The nadir of the sphere is implicitly defined at 0.0 radgpogndAngle is restricted to non-decreasing
values in the range [0.@72]. There shall be one mogeoundColor value than there agroundAngle values. The

first colour value is for the nadir which is not specified indghmindAngle field. If the lastgroundAngle is less than

172, the region between the lagtoundAngle and the equator is non-existant. The ground colour is linearly
interpolated between the specifigrbundColor values.

71



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The backUrl, bottomUrl, frontUrl, leftUrl, rightUrl, and topUrl fields specify a set of images that define a
background panorama between the ground/sky backdrop and the scene's geometry. The panorama consists of six
images, each of which is mapped onto a face of an infinitely large cube contained within the backdrop spheres and
centred in the local coordinate system. The images are applied individually to each face of the cube. On the front,
back, right, and left faces of the cube, when viewed from the origin looking down the negative Z-axis with the Y-
axis as the view up direction, each image is mapped onto the corresponding face with the same orientation as if the
image were displayed normally in 2Ba¢kUrl to back facefrontUrl to front faceeftUrl to left face, andightUrl

to right facé. On the top face of the cube, when viewed from the origin looking along the +Y-axis with the +Z-axis

as the view up direction, thtepUrl image is mapped onto the face with the same orientation as if the image were
displayed normally in 2D. On the bottom face of the box, when viewed from the origin along the negative Y-axis
with the negative Z-axis as the view up direction, bbg#gomUrl image is mapped onto the face with the same
orientation as if the image were displayed normally in 2D.

Figure 6.lillustrates the Background node backdrop and background textures.

Alpha values in the panorama images (i.e., two or four component images) specify that the panorama is semi-
transparent or transparent in regions, allowinggtimendColor andskyColor to be visible.

Seed.6.11, Texture map$or a general description of texture maps.

Often, thebottomUrl andtopUrl images will not be specified, to allow sky and ground to show. The other four
images may depict surrounding mountains or other distant scenery. Browsers shall support the JPHBHE&)e

and PNG (se@.[PNG] image file formats, and in addition, may support any other image format (e.g., CGM) that
can be rendered into a 2D image. Support for the GIFH$€E#F]) format is recommended (including transparency)

. More detail on therl fields can be found 4.5, VRML and the World Wide Web

Y

side view top wiew

Figure 6.1 -- Background node

Panorama images may be one component (greyscale), two component (greyscale plus alpha), three component (full
RGB colour), or four-component (full RGB colour plus alpha).

Ground colours, sky colours, and panoramic images do not translate with respect to the viewer, though they do
rotate with respect to the viewer. That is, the viewer can never get any closer to the background, but can turn to
examine all sides of the panorama cube, and can look up and down to see the concentric rings of ground and sky (if
visible).

72



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Background nodes are not affectedHng nodes. Therefore, if a Background node is active (i.e., bound) while a
Fog node is active, then the Background node will be displayed with no fogging effects. It is the author"
responsibility to set the Background values to match the Fog values (e.g., ground colours fade to fog colour wi
distance and panorama images tinted with fog colour). Background nodes are not affected by light sources.

97 e
'\.IFlmL..-”{ﬁ/—

@6.6 Billboard
Bi |l board {

eventln M-Node addChi | dren

eventln M-Node renmoveChi | dren

exposedFi el d SFVec3f axisCORotation 0 1 0 # (-0, o)

exposedFi el d MFNode  children []

field SFVec3f bboxCenter 000 # (- oo, )

field SFVec3f bboxSi ze -1 -1-1 # (0,0 or -1,-1,-1
}

The Billboard node is a grouping node which modifies its coordinate system so that the Billboard node's local Z-ax
turns to point at the viewer. The Billboard node has children which may be other children nodes.

The axisOfRotation field specifies which axis to use to perform the rotation. This axis is defined in the local
coordinate system.

When theaxisOfRotation field is not (0, 0, 0), the following steps describe how to rotate the billboard to face the
viewer:

a. Compute the vector from the Billboard node's origin to the viewer's position. This vector is called the
billboard-to-viewer vector.

b. Compute the plane defined by tlésOfRotation and the billboard-to-viewer vector.

c. Rotate the local Z-axis of the billboard into the plane from b., pivoting aroursdi#i@¥Rotation.
When the axisOfRotation field is set to (0, 0, 0), the special casenef-alignment is indicated. In this case, the
object rotates to keep the billboard's local Y-axis parallel with the Y-axis of the viewer. This special case i

distinguished by setting thexisOfRotation to (0, 0, 0). The following steps describe how to align the billboard's Y-
axis to the Y-axis of the viewer:

d. Compute the billboard-to-viewaector.

e. Rotate the Z-axis of the billboard to be collinear with the billboard-to-viewer vector and pointing towards
the viewer's position.

f. Rotate the Y-axis of the billboard to be parallel and oriented in the same direction as the Y-axis of th
viewer.

If the axisOfRotation and the billboard-to-viewer line are coincident, the plane cannot be established and the
resulting rotation of the billboard is undefined. For example, itxgfRotation is set to (0,1,0) (Y-axis) and the
viewer flies over the billboard and peers directly down the Y-axis, the results are undefined

Multiple instances of Billboard nodes (DEF/USE) operate as expected: each instance rotates in its unique coordin
system to face the viewer.

73



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Subclause4.6.5, Grouping and children nagleprovides a description of thehildren, addChildren, and
removeChildren fields and eventins.

The bboxCenter andbboxSze fields specify a bounding box that encloses the Billboard node's children. This is a
hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller
than the actual bounding box of the children at any time. A ddfbakSze value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. A descriptidb@{Gaeter and

bboxSze fields is contained id.6.4, Bounding boxes

wnmu?@—
®6.7 Box
Box {
field SFVec3f size 2 2 2 # (0, «)
}

The Box node specifies a rectangular parallelepiped box centred at (0, 0, 0) in the local coordinate system and
aligned with the local coordinate axes. By default, the box measures 2 units in each dimension, from -1 to +1. The
size field specifies the extents of the box along the X-, Y-, and Z-axes respectively and each component value shall
be greater than zerbigure 6.2llustrates the Box node.

size[1]

Figure 6.2 -- Box node

Textures are applied individually to each face of the box. On the front (+2), back (-2), right (+X), and left (-X) faces
of the box, when viewed from the outside with the +Y-axis up, the texture is mapped onto each face with the same
orientation as if the image were displayed normally in 2D. On the top face of the box (+Y), when viewed from
above and looking down the Y-axis toward the origin with the -Z-axis as the view up direction, the texture is
mapped onto the face with the same orientation as if the image were displayed normally in 2D. On the bottom face
of the box (-Y), when viewed from below looking up the Y-axis toward the origin with the +Z-axis as the view up
direction, the texture is mapped onto the face with the same orientation as if the image were displayed normally in
2D. TextureTransfornaffects the texture coordinates of the Box.

74



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

The Box node's geometry requires outside faces only. When viewed from the inside the results are undefined.

wmmu‘rﬂ_ﬁ}—
®6.8 Collison
Col l'ision {
eventln M-Node addChi | dren
eventln M-Node renmoveChi | dren
exposedFi el d MFNode  children []
exposedFi el d SFBool col lide TRUE
field SFVec3f bboxCenter 000 # (-0, )
field SFVec3f bboxSi ze -1-1-1 # (0,00 or -1,-1,-1
field SFNode pr oxy NULL
event Qut SFTi nme col i deTi me
}

The Collision node is a grouping node that specifies the collision detection properties for its children (and the
descendants), specifies surrogate objects that replace its children during collision detection, and sends eve
signalling that a collision has occurred between the avatar and the Collision node's geometry or surrogate.
default, all geometric nodes in the scene are collidable with the viewer except IndexedLineSet, PointSet, and Te
Browsers shall detect geometric collisions between the avata6.@®&eNavigationinfp and the scene's geometry

and prevent the avatar from 'entering’ the geometry438e4, Collision detection and terrain followjrfgr general
information on collision detection.

If there are no Collision nodes specified in a VRML file, browsers shall detect collisions between the avatar and &
objects during navigation.

Subclause4.6.5, Grouping and children nodesontains a description of thehildren, addChildren, and
removeChildren fields and eventins.

The Collision node'sallide field enables and disables collision detectiorcolfide is set to FALSE, the children

and all descendants of the Collision node shall not be checked for collision, even though they are drawn. Ti
includes any descendent Collision nodes that balViele set to TRUE (i.e., settingpllide to FALSE turns collision

off for every node below it).

Collision nodes with theollide field set to TRUE detect the nearest collision with their descendent geometry (or
proxies). When the nearest collision is detected, the collided Collision node sends the time of the collision throug
its collideTime eventOut. If a Collision node contains a child, descendant, or proxy (see below) that is a Collisior
node, and both Collision nodes detect that a collision has occurred, both catindedime event at the same time.

A collideTime event shall be generated if the avatar is colliding with collidable geometry when the Collision node is
read from a VRML file or inserted into the transformation hierarchy.

The bboxCenter andbboxSze fields specify a bounding box that encloses the Collision node's children. This is a
hint that may be used for optimization purposes. The results are undefined if the specified bounding box is smal
than the actual bounding box of the children at any time. A ddfbakSze value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. More detailshorCérger and
bboxSze fields can be found id.6.4, Bounding boxes

The collision proxy, defined in thproxy field, is any legal children node as described4if.5, Grouping and
children nodesthat is used as a substitute for the Collision node's children during collision detection. The proxy i
used strictly for collision detection; it is not drawn.

75



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

If the value of theollide field is TRUE and theroxy field is non-NULL, theproxy field defines the scene on which
collision detection is performed. If thppoxy value is NULL, collision detection is performed againstdhi&dren of
the Collision node.

If proxy is specified, any descendent children of the Collision node are ignored during collision deterttitoreff
is empty,collide is TRUE, andoroxy is specified, collision detection is performed against the proxy but nothing is
displayed. In this manner, invisible collision objects may be supported.

The callideTime eventOut generates an event specifying the time when the avatar2@elavigationInfp makes

contact with the collidable children or proxy of the Collision node. An ideal implementation computes the exact
time of collision. Implementations may approximate the ideal by sampling the positions of collidable objects and the
user. TheNavigationinfonode contains additional information for parameters that control the avatar size.

\.IF!.I'I'II_HTL_@—
@6.9 Color
Col or {
exposedFi el d MCol or color [] #10,1]
}

This node defines a set of RGB colours to be used in the fields of another node.

Color nodes are only used to specify multiple colours for a single geometric shape, such as colours for the faces or
vertices of an IndexedFaceSet. A Material node is used to specify the overall material parameters of lit geometry. If
both a Material node and a Color node are specified for a geometric shape, the colours shall replace the diffuse
component of the material.

RGB or RGBA textures take precedence over colours; specifying both an RGB or RGBA texture and a Color node
for geometric shape will result in the Color node being ignored. Details on lighting equations can be folid in

Lighting model

\.IF!.I'I'II_W{@—
@6.10 ColorInterpolator
Col orl nterpol ator {
eventin SFFl oat set _fraction # (-0, )
exposedFi el d MFFl oat key [] # (- 00, )
exposedFi el d MFCol or keyVal ue [] # [0, 1]

event Qut SFCol or val ue_changed
}

This node interpolates among a list of MFColor key values to produce an SFColory@@&Bghanged event. The
number of colours in thkeyValue field shall be equal to the number of keyframes inkiyefield. ThekeyValue

field and value changed events are defined in RGB colour space. A linear interpolation using the value of
set_fraction as input is performed in HSV space (&F-OLE] for description of RGB and HSV colour spaces).
The results are undefined when interpolating between two consecutive keys with complementary hues.

4.6.8, Interpolator nodesontains a detailed discussion of interpolators.

76



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

mnmuf@—

@6.11 Cone
Cone {

field SFFI oat bott onmRadi us 1 # (0, «)

field SFFI oat hei ght 2 # (0, «)

field SFBool si de TRUE

field SFBool bottom TRUE
}

The Cone node specifies a cone which is centred in the local coordinate system and whose central axis is alig
with the local Y-axis. ThéottomRadius field specifies the radius of the cone's base, antidight field specifies

the height of the cone from the centre of the base to the apex. By default, the cone has a radius of 1.0 at the bot
and a height of 2.0, with its apex at yeight/2 and its bottom at y =height/2. BothbottomRadius andheight shall

be greater than zerbigure 6.3llustrates the Cone node.

he

Figure 6.3 -- Cone node

Theside field specifies whether sides of the cone are created ardttbm field specifies whether the bottom cap
of the cone is created. A value of TRUE specifies that this part of the cone exists, while a value of FALSE specifi
that this part does not exist (not rendered or eligible for collision or sensor intersection tests).

When a texture is applied to the sides of the cone, the texture wraps counterclockwise (from above) starting at 1
back of the cone. The texture has a vertical seam at the back in the X=0 plane, from thehejgi®/200) to the

point (0, height/2, -bottomRadius). For the bottom cap, a circle is cut out of the texture square centred at
(0,-height/2, 0) with dimensions (2 BottomRadius) by (2 xbottomRadius). The bottom cap texture appears right

77



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

side up when the top of the cone is rotated towards the -Z3axitureTransformaffects the texture coordinates of
the Cone.

The Cone geometry requires outside faces only. When viewed from the inside the results are undefined.

\.IF!.I'I'II_W{@—
@6.12 Coordinate
Coordi nate {
exposedFi el d M~Vec3f point [] # (- o0, o)
}

This node defines a set of 3D coordinates to be used icothd field of vertex-based geometry nodes including
IndexedFaceSet, IndexedLineSet, and PointSet.

\.IF!.I'I'II_HT{@—
@6.13 Coordinatel nter polator
Coor di nat el nt er pol ator {
eventin SFFl oat set _fraction # (- o0, )
exposedFi el d MFFl oat key [] # (- 00, )
exposedFi el d MFVec3f keyVal ue [] # (- o0, )
event Qut M~Vec3f val ue_changed

}

This node linearly interpolates among a list of MFVec3f values. The number of coordinatekey\idae field
shall be an integer multiple of the number of keyframes irkéfidield. That integer multiple defines how many
coordinates will be contained in thalue_changed events.

4.6.8, Interpolator nodesontains a more detailed discussion of interpolators.

\.IF!.I'I'II_HT{@—

®6.14 Cylinder
Cylinder {

field SFBool bottom TRUE

field SFFI oat hei ght 2 # (0, o)

field SFFI oat radius 1 # (0, «)

field SFBool si de TRUE

field SFBool top TRUE
}

The Cylinder node specifies a capped cylinder centred at (0,0,0) in the local coordinate system and with a central
axis oriented along the local Y-axis. By default, the cylinder is sized at "-1" to "+1" in all three dimensions. The
radius field specifies the radius of the cylinder and keght field specifies the height of the cylinder along the
central axis. Botladius andheight shall be greater than zefggure 6.4illustrates the Cylinder node.

78



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

The cylinder has threparts: the Sde, thetop (Y = +height/2) and théottom (Y = -height/2). Each part has an
associated SFBool field that indicates whether the part exists (TRUE) or does not exist (FALSE). Parts which do r
exist are not rendered and not eligible for intersection tests (e.g., collision detection or sensor activation).

side

+X

Figure 6.4 -- Cylinder node

When a texture is applied to a cylinder, it is applied differently to the sides, top, and bottom. On the sides, tt
texture wraps counterclockwise (from above) starting at the back of the cylinder. The texture has a vertical seam
the back, intersecting the X=0 plane. For the top and bottom caps, a circle is cut out of the unit texture squat
centred at (0, +/height/2, 0) with dimensions 2 radius by 2 xradius. The top texture appears right side up when
the top of the cylinder is tilted toward the +Z-axis, and the bottom texture appears right side up when the top of
cylinder is tilted toward the -Z-axi$extureTransfornaffects the texture coordinates of the Cylinder node.

The Cylinder node's geometry requires outside faces only. When viewed from the inside the results are undefined.

79



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

meL.ﬂf{;_ﬁj}—
®6.15 Cylinder Sensor
Cyl i nder Sensor {
exposedFi el d SFBool aut o f set TRUE
exposedFi el d SFFI oat di skAngl e 0. 262 # (0,1 2)
exposedFi el d SFBool enabl ed TRUE
exposedFi el d SFFI oat maxAngle -1 # [-2m 21
exposedFi el d SFFI oat mnAngle O # [-2m 21
exposedFi el d SFFI oat of f set 0 # (-0, )
event CQut SFBool i SActive
event CQut SFRot ati on rotati on_changed
event CQut SFVec3f t rackPoi nt _changed

}

The CylinderSensor node maps pointer motion (e.g., a mouse or wand) into a rotation on an invisible cylinder that is
aligned with the Y-axis of the local coordinate system. The CylinderSensor uses the descendent geometry of its
parent node to determine whether it is liable to generate events.

The enabled exposed field enables and disables the CylinderSensor node. If TRUE, the sensor reacts appropriately
to user events. If FALSE, the sensor does not track user input or send eematdetf receives a FALSE event and
isActive is TRUE, the sensor becomes disabled and deactivated, and outpsftstiza FALSE event. Ifenabled

receives a TRUE event the sensor is enabled and ready for usati@ctiv

A CylinderSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent group6SeB, Activating and manipulating sensdcs more
details on using the pointing device to activate the CylinderSensor.

Upon activation of the pointing device while indicating the sensor's geomeiigActive TRUE event is sent. The

initial acute angle between the bearing vector and the local Y-axis of the CylinderSensor node determines whether
the sides of the invisible cylinder or the caps (disks) are used for manipulation. If the initial angle is less than the
diskAngle, the geometry is treated as an infinitely large disk lying in the local Y=0 plane and coincident with the
initial intersection point. Dragging motion is mapped into a rotation around the local +Y-axis vector of the sensor's
coordinate system. The perpendicular vector from the initial intersection point to the Y-axis defines zero rotation
about the Y-axis. For each subsequent position of the beaniogti@mn_changed event is sent that equals the sum

of the rotation about the +Y-axis vector (from the initial intersection to the new intersection) phifsdhealue.
trackPoint_changed events reflect the unclamped drag position on the surface of this disk. When the pointing device
is deactivated andutoOffset is TRUE, offset is set to the last value obtation changed and anoffset_changed

event is generated. Sé.7.4, Drag sensqror a more general descriptionaftoOffset andoffset fields.

If the initial acute angle between the bearing vector and the local Y-axis of the CylinderSensor node is greater than
or equal tadiskAngle, then the sensor behaves like a cylinder. The shortest distance between the point of intersection
(between the bearing and the sensor's geometry) and the Y-axis of the parent group's local coordinate system
determines the radius of an invisible cylinder used to map pointing device motion and marks the zero rotation value.
For each subsequent position of the bearimgtation changed event is sent that equals the sum of the right-handed
rotation from the original intersection about the +Y-axis vector plusoffiset value.trackPoint_changed events

reflect the unclamped drag position on the surface of the invisible cylinder. When the pointing device is deactivated
andautoOffset is TRUE, offset is set to the last rotation angle ancbffeet_changed event is generated. More details

are available i.6.7.4, Drag sensars

When the sensor generatesisfictive TRUE event, it grabs all further motion events from the pointing device until
it is released and generatesigictive FALSE event (other pointing-device sensors shall not generate events during
this time). Motion of the pointing device whilgActive is TRUE is referred to as a "drag.” If a 2D pointing device is

in use,isActive events will typically reflect the state of the primary button associated with the deviciesAcgve is

80



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device (e.g., a wand)
in use,isActive events will typically reflect whether the pointer is within or in contact with the sensor's geometry.

While the pointing device is activatethackPoint_changed and rotation_changed events are output and are
interpreted from pointing device motion based on the sensor's local coordinate system at the time of activatic
trackPoint_changed events represent the unclamped intersection points on the surface of the invisible cylinder o
disk. If the initial angle results in cylinder rotation (as opposed to disk behaviour) and if the pointing device i
dragged off the cylinder while activated, browsers may interpret this in a variety of ways (e.g., clamp all values t
the cylinder and continuing to rotate as the point is dragged away from the cylinder). Each movement of the pointir
device whileisActive is TRUE generatesackPoint_changed androtation_changed events.

The minAngle andmaxAngle fields clamprotation_changed events to a range of valuesnifnAngle is greater than
maxAngle, rotation_changed events are not clamped. ThénAngle andmaxAngle fields are restricted to the range

[-2m, 2.

More information about this behaviour is described.i.7.3, Pointing-device sensp#s6.7.4, Drag sensqrand
4.6.7.5, Activating and manipulating sensors

\.IF!.I'I'II_HTL_@—
®6.16 DirectionalLight

Di recti onal Li ght {

exposedFi el d SFFl oat anbientlntensity O # [0, 1]
exposedFi el d SFCol or col or 111 # [0, 1]
exposedFi el d SFVec3f direction 00 -1 # (-0, )
exposedFi el d SFFl oat intensity 1 # [0, 1]
exposedFi el d SFBool on TRUE

}

The DirectionalLight node defines a directional light source that illuminates along rays parallel to a given 3
dimensional vector. A description of tambientIntensity, color, intensity, andon fields is in4.6.6, Light sources

The direction field specifies the direction vector of the illumination emanating from the light source in the local
coordinate system. Light is emitted along parallel rays from an infinite distance away. A directional light sourc
illuminates only the objects in its enclosing parent group. The light may illuminate everything within this coordinate
system, including all children and descendants of its parent group. The accumulated transformations of the par
nodes affect the light.

DirectionalLight nodes do not attenuate with distance. A precise description of VRML's lighting equations is
contained iM.14, Lighting model

81



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

~RmLY 8 —
@6.17 ElevationGrid
El evationGid {
eventln MFFl oat set _hei ght
exposedFi el d SFNode col or NULL
exposedFi el d SFNode nor mal NULL
exposedFi el d SFNode t exCoord NULL
field MFFl oat  hei ght [ # (-0, o)
field SFBool ccw TRUE
field SFBool col or Per Vert ex TRUE
field SFFl oat creaseAngl e 0 # [0, »)
field SFBool nor mal Per Vert ex TRUE
field SFBool solid TRUE
field SFInt32 xDi nension 0 # [0, »)
field SFFl oat  xSpaci ng 1.0 # [0, o)
field SFInt32 zDi nension 0 # [0, »)
field SFFl oat  zSpaci ng 1.0 # [0, o)

}

The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0 plane of the local
coordinate system. The geometry is described by a scalar array of height values that specify the height of a surface
above each point of the grid.

The xDimension and zDimension fields indicate the number of elements of the dneghht array in the X and Z
directions. BothxDimension andzDimension shall be greater than or equal to zero. If eitherxiDienension or the
ZDimension is less than two, the ElevationGrid contains no quadrilaterals. The vertex locations for the rectangles are
defined by théeight field and thexSpacing andzSpacing fields:

« Theheight field is anxDimension by zDimension array of scalar values representing the height above the
grid for each vertex.

* The xSpacing and zSpacing fields indicate the distance between vertices in the X and Z directions
respectively, and shall be greater than zero.

Thus, the vertex corresponding to the point PJi, j] on the grid is placed at:

Pli,j].x = xSpacing x i

Pli,jl.y = height[ i + j x xDi mension]
Pli,j].z = zSpacing % j
where 0 <= i < xDinension and 0 <= j < zDi nension,

and P[0,0] is height[0] units above/below the origin of the |ocal
coordi nate system

Theset_height eventin allows the height MFFloat field to be changed to support animatedi@iérid nodes.
Thecolor field specifies per-vertex or per-quadrilateral colours for the ElevationGrid node depending on the value

of colorPerVertex. If the color field is NULL, the ElevationGrid node is rendered with the overall attributes of the
Shape node enclosing the ElevationGrid node4ské Lighting modgl

The colorPerVertex field determines whether colours specified in ¢bler field are applied to each vertex or each
quadrilateral of the ElevationGrid nodectlorPerVertex is FALSE and theolor field is not NULL, thecolor field

82



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

shall specify a Color node containing at leaBlifnension-1) x (zDimension-1) colours; one for each quadrilateral,
ordered as follows:

QuadCol or[i,j] = Color[ i + j x (xD nmension-1)]

where 0 <= i < xDinension-1 and 0 <= | < zDi nension-1,
and QuadColor[i,j] is the colour for the quadril ateral defined
by height[i+j xxDi nensi on], height[(i+1)+] xxDi nmension],
hei ght [ (i +1) +(j +1) x xDi mensi on] and hei ght[i +(j +1) x xDi mensi on]
If colorPerVertex is TRUE and theolor field is not NULL, thecolor field shall specify a Color node containing at
leastxDimension x zDimension colours, one for each vertex, ordered as follows:

VertexColor[i,j] = Color[ i + j x xDi mension]

where 0 <= i < xDinension and 0 <= j < zDi nension,
and VertexColor[i,j] is the colour for the vertex defined by
hei ght[i +] xxDi mensi on]

Thenormal field specifies per-vertex or per-quadrilateral normals for the ElevationGrid nodentrtinal field is
NULL, the browser shall automatically generate normals, usingriseseAngle field to determine if and how
normals are smoothed across the surface4(§e8.5, Crease angle fi¢ld

The normalPerVertex field determines whether normals are applied to each vertex or each quadrilateral of the
ElevationGrid node depending on the valuaaimal PerVertex. If normalPerVertex is FALSE and th@ormal node

is not NULL, thenormal field shall specify a Normal node containing at leaBlirfension-1) x (zDimension-1)
normals; one for each quadrilateral, ordered as follows:

QuadNormal [i,j] = Normal[ i + j x(xDi nension-1)]

where 0 <= i < xDinension-1 and 0 <= | < zDi nension-1,
and QuadNormal[i,j] is the nornmal for the quadrilateral defined
by height[i+j xxDi nmension], height[(i+1)+] xxD nmension],
hei ght [ (i +1) +(j +1) x xDi mensi on] and hei ght[i +(j +1) x xDi mensi on]
If normalPerVertex is TRUE and thenormal field is not NULL, thenormal field shall specify a Normal node
containing at leastDimension x zDimension normals; one for each vertex, ordered as follows:

VertexNormal [i,j] = Normal[ i + j x xDi mension]

where 0 <= i < xDinension and 0 <= j < zDi nension,
and VertexNormal[i,j] is the normal for the vertex defined
by hei ght[i +j xxDi mensi on]

The texCoord field specifies per-vertex texture coordinates for the ElevationGrid nodexQbord is NULL,
default texture coordinates are applied to the geometry. The default texture coordinates range from (0,0) at the fi
vertex to (1,1) at the last vertex. The S texture coordinate is aligned with the positive X-axis, and the T textu
coordinate with positive Z-axis. texCoord is not NULL, it shall specify a TextureCoordinate node containing at
least kDimension) x (zDimension) texture coordinates; one for each vertex, ordered as follows:

VertexTexCoord[i,j] = TextureCoordinate[ i + j x xDi mension]
where 0 <= i < xDinension and 0 <= j < zDi nension,

and VertexTexCoord[i,j] is the texture coordinate for the vertex
defined by height[i+] xxDi nmensi on]

83



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Theccw, solid, andcreaseAngle fields are described #h.6.3, Shapes and geometry

By default, the quadrilaterals are defined with a counterclockwise ordering. Hence, the Y-component of the normal
is positive. Setting thecw field to FALSE reverses the normal direction. Backface culling is enabled whsalithe
field is TRUE.

SeeFigure 6.5for a depiction of the ElevationGrid node.

A L4 xDimension = 5
5 normal [<]
.0
1 g
zlimension = ¢ J -
. O 3 I
‘ 4
14
zSpauny T —— height [19]
z
15
.\—\.
¥apacing
Figure 6.5 -- ElevationGrid node
wmmu‘rﬂ_ﬁ}—
®6.18 Extrusion
Extrusion {
eventl n MFVec2f set _crossSection
eventln MFRot ation set_orientation
eventl n MFVec2f set _scale
eventl n MFVec3f set _spine
field SFBool begi nCap TRUE
field SFBool ccw TRUE
field SFBool convex TRUE
field SFFI oat creaseAngl e 0 # [0, o)
field M-Vec 2f crossSection [ 1121, 1-1, -1 -1,
-11, 1 1] # (- o0, )
field SFBool endCap TRUE
field M-Rot ation orientation 0010 #[-1,1], (- oo, )
field M-Vec 2f scal e 11 # (0, »)
field SFBool solid TRUE
field MFVec 3f spi ne [ 000, 010] # (-0c,0)
}

84



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

6.18.1 Introduction

The Extrusion node specifies geometric shapes based on a two dimensional cross-section extruded along a tl
dimensional spine in the local coordinate system. The cross-section can be scaled and rotated at each spine poi
produce a wide variety of shapes.

An Extrusion node is defined by:
a. a 2DcrossSection piecewise linear curve (described as a series of connected vertices);
b. a 3Dspine piecewise linear curve (also described as a series of connected vertices);
c. alist of 2Dscale parameters;

d. alist of 3Dorientation parameters.

6.18.2 Algorithmic description

Shapes are constructed as follows. The cross-section curve, which starts as a curve in the Y=0 plane, is first sc:
about the origin by the firstale parameter (first value scales in X, second value scales in Z). It is then translated by
the first spine point and oriented using the foigentation parameter (as explained later). The same procedure is
followed to place a cross-section at the second spine point, using the second scale and orientation valt
Corresponding vertices of the first and second cross-sections are then connected, forming a quadrilateral polyc
between each pair of vertices. This same procedure is then repeated for the rest of the spine points, resulting |
surface extrusion along the spine.

The final orientation of each cross-section is computed by first orienting it relative to the spine segments on eith
side of point at which the cross-section is placed. This is known apitieealigned cross-section plane (SCP), and

is designed to provide a smooth transition from one spine segment to the néxf(gee.§. The SCP is then
rotated by the correspondirayientation value. This rotation is performed relative to the SCP. For example, to
impart twist in the cross-section, a rotation about the Y-axis (0 1 0) would be used. Other orientations are valid a
rotate the cross-section out of the SCP.

The SCP is computed by first computing its Y-axis and Z-axis, then taking the cross product of these to determil
the X-axis. These three axes are then used to determine the rotation value needed to rotate the Y=0 plane to the !
This results in a plane that is the approximate tangent of the spine at each point, as Sligwe H6 First the Y-

axis is determined, as follows:

Let n be the number of spines and let i be the index variable satisfying 0 <=i < n:

a. For all pointsother than thefirst or last: The Y-axis forspineli] is found by normalizing the vector defined
by (spingli+1] - sping[i-1]).

b. If the spine curveisclosed: The SCP for the first and last points is the same and is found sgingj1(] -
spine[n-2]) to compute the Y-axis.

c. If the spine curveis not closed: The Y-axis used for the first point is the vector frgome[0] to spine[1],
and for the last it is the vector frogpine[n-2] to spine[n-1].

85



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

X axis

spinefi+1]

spinefi-1]

Figure 6.6 -- Spine-aligned cr oss-section plane at a spine point.
The Z-axis is determined as follows:

d. For all pointsother than the first or last: Take the following cross-product:
Z = (spine[i+1l] - spine[i]) x (spine[i-1] - spine[i])

e. |If the spine curve is closed: The SCP for the first and last points is the same and is found by taking the

following cross-product:
Z = (spine[l] - spine[0]) x (spine[n-2] - spine[0])

f. If the spine curve is not closed: The Z-axis used for the first spine point is the same as the Z-axis for

spine[1]. The Z-axis used for the last spine point is the same as the Z-axis for spine[n-2].

g. After determining the Z-axis, its dot product with the Z-axis of the previous spine point is computed. If this
value is negative, the Z-axis is flipped (multiplied by -1). In most cases, this prevents small changes in the

spine segment angles from flipping the cross-section 180 degrees.

Once the Y- and Z-axes have been computed, the X-axis can be calculated as their cross-product.

6.18.3 Special cases

If the number ofcale or orientation values is greater than the number of spine points, the excess values are ignored.
If they contain one value, it is applied at all spine points. The results are undefined if the number of scale or

orientation values is greater than one but less than the number of spine pointalélVedues shall be positive.

86



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

If the three points used in computing the Z-axis are collinear, the cross-product is zero so the value from tl
previous point is used instead.

If the Z-axis of the first point is undefined (because the spine is not closed and the first two spine segments ¢
collinear) then the Z-axis for the first spine point with a defined Z-axis is used.

If the entire spine is collinear, the SCP is computed by finding the rotation of a vector along the positivev Y}axis (
to the vector formed by the spine point&). The Y=0 plane is then rotated by this value.

If two points are coincident, they both have the same SCP. If each point has a different orientation value, then t
surface is constructed by connecting edges of the cross-sections as normal. This is useful in creating revol\
surfaces.

Note: combining coincident and non-coincident spine segments, as well as other combinations, can lead to
inter penetrating surfaces which the extrusion algorithm makes no attempt to avoid.

6.18.4 Common cases
The following common cases are among the effects which are supported by the Extrusion node:
Surfaces of revolution:

If the cross-section is an approximation of a circle and the spineis sraight, the Extrusion is equivalent to a
surface of revolution, where the scaleparameters define the size of the cross-section along the spine.

Uniform extrusions:

If the scaleis (1, 1) and the spineis straight, the cross-section is extruded uniformly without twisting or scaling
along the spine. Theresult isa cylindrical shape with a uniform cross section.

Bend/twist/taper objects:

These shapes are the result of using all fields. The spine curve bends the extruded shape defined by the cross-
section, the orientation parameters (given as rotations about the Y-axis) twist it around the spine, and the scale
parameters taper it (by scaling about the spine).

6.18.5 Other fields

Extrusion has threparts: the sides, theeginCap (the surface at the initial end of the spine) andetiCap (the
surface at the final end of the spine). The caps have an associated SFBool field that indicates whether each e
(TRUE) or doesn't exist (FALSE).

When thebeginCap or endCap fields are specified as TRUE, planar cap surfaces will be generated regardless of
whether theerossSection is a closed curve. HrossSection is not a closed curve, the caps are generated by adding a
final point tocrossSection that is equal to the initial point. An open surface can still have a cap, resulting (for a
simple case) in a shape analogous to a soda can sliced in half vertically. These surfaces are generapiokasen if
also a closed curve. If a field value is FALSE, the corresponding cap is not generated.

Texture coordinates are automatically generated by Extrusion nodes. Textures are mapped so that the coordin
range in the U direction from 0 to 1 along tbmssSection curve (with O corresponding to the first point in
crossSection and 1 to the last) and in the V direction from 0 to 1 alongytive curve (with O corresponding to the

first listedspine point and 1 to the last). If either thredCap or beginCap exists, therossSection curve is uniformly
scaled and translated so that the larger dimension of the cross-section (X or Z) produces texture coordinates
range from 0.0 to 1.0. THeginCap andendCap textures' S and T directions correspond to the X and Z directions in
which thecrossSection coordinates are defined.

87



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The browser shall automatically generate normals for the Extrusion node,usinepeéngle field to determine if

and how normals are smoothed across the surface. Normals for the caps are generated along the Y-axis of the SCP,
with the ordering determined by viewing the cross-section from above (looking along the negative Y-axis of the
SCP). By default, &eginCap with a counterclockwise ordering shall have a normal along the negative Y-axis. An
endCap with a counterclockwise ordering shall have a normal along the positive Y-axis.

Each quadrilateral making up the sides of the extrusion are ordered from the bottom cross-section (the one at the
earlier spine point) to the top. So, one quadrilateral has the points:

spi ne[ 0] (crossSection[0], crossSection[1])
spi ne[ 1] (crossSection[1], crossSection[0])

in that order. By default, normals for the sides are generated as descAb®8,ilshapes and geometry

For instance, a circular crossSection with counter-clockwise ordering and the default spine form a cylinder. With
solid TRUE andccw TRUE, the cylinder is visible from the outside. Changiog to FALSE makes it visible from
the inside.

Theccw, solid, convex, andcreaseAngle fields are described # 6.3, Shapes and geometry

97 )
\JHmL‘.lriﬁ/_
@®6.19 Fog
Fog {
exposedFi el d SFCol or col or 111 # [0, 1]
exposedField SFString fogType " LI NEAR"
exposedField SFFloat visibilityRange O # [0, o)
eventln SFBool set _bind
event Cut SFBool i sBound
}

The Fog node provides a way to simulate atmospheric effects by blending objects with the colour specified by the
color field based on the distances of the various objects from the viewer. The distances are calculated in the
coordinate space of the Fog node. Mn&bilityRange specifies the distance in metres (in the local coordinate
system) at which objects are totally obscured by the fog. Objects located outsidibthigyRange from the viewer

are drawn with a constant colouraaior. Objects very close to the viewer are blended very little with thediag.

A vigbilityRange of 0.0 disables the Fog node. ThghilityRange is affected by the scaling transformations of the

Fog node's parents; translations and rotations have no affetdilmtiityRange. Values of thevighbilityRange field

shall be in the range [9).

Since Fog nodes are bindable children nodes4(&#0, Bindable children nodes Fog node stack exists, in which

the top-most Fog node on the stack is currently active. To push a Fog node onto the top of the stack, a TRUE value
is sent to theset_bind eventin. Once active, the Fog node is bound to the browser view. A FALSE value sent to
set_bind, pops the Fog node from the stack and unbinds it from the browser viewer. More details on the Fog node
stack can be found #.6.10, Bindable children nodes

The fogType field controls how much of the fog colour is blended with the object as a function of distance. If
fogType is "LINEAR", the amount of blending is a linear function of the distance, resulting in a depth cueing effect.
If fogType is "EXPONENTIAL," an exponential increase in blending is used, resulting in a more natural fog
appearance.

The effect of fog on lighting calculations is described.iv, Lighting model

88



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

5] =)
'\IFlmL.-”{;._ﬁj/—
®6.20 FontStyle
Font Style {
field MFString famly " SERI F"
field SFBool hori zont al TRUE
field MFString justify "BEG N'
field SFString | anguage "
field SFBool | eft TORi ght TRUE
field SFFl oat size 1.0 # (0, o)
field SFFl oat spacing 1.0 # [0, o)
field SFString style " PLAI N'
field SFBool topToBottom TRUE
}

6.20.1 Introduction

The FontStyle node defines the size, family, and style used for Text nodes, as well as the direction of the text strir
and any language-specific rendering techniques used for non-English tegt4%e€ext for a description of the

Text node.

Thesize field specifies the nominal height, in the local coordinate system of the Text node, of glyphs rendered an
determines the spacing of adjacent lines of text. Values afzngeld shall be greater than zero.

The spacing field determines the line spacing between adjacent lines of text. The distance between the baseline
each line of text isspacing x size) in the appropriate direction (depending on other fields described below). The
effects of thesize andspacing field are depicted ifrigure 6.7(spacing greater than 1.0). Values of theacing field

shall be non-negative.

size

srenspsendy This is the 2nd line of text.gs=
swwcrens) This s the third.de

Figure 6.7 -- Text size and spacing fields

6.20.2 Font family and style

Font attributes are defined with tfemily andstyle fields. The browser shall map the specified font attributes to an
appropriate available font as described below.

The family field contains a case-sensitive MFString value that specifies a sequence of font family names i
preference order. The browser shall search the MFString value for the first font family name matching a support:
font family. If none of the string values matches a supported font family, the default font 'f&@BERYF" shall be

used. All browsers shall support at IE&SERIF" (the default) for a serif font such as Times Roni&&NS" for a
sans-serif font such as Helvetica; andy PEWRITER" for a fixed-pitch font such as Courier. An emfdynily

value is identical t¢" SERIF"].

89



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The style field specifies a case-sensitive SFString value that ma8ybalIN" (the default) for default plain type;
"BOLD" for boldface type;ITALIC" for italic type; or"BOLDITALIC" for bold and italic type. An empty
style value (") is identical td' PLAIN".

6.20.3 Direction and justification

Thehorizontal, leftToRight, andtopToBottom fields indicate the direction of the text. Therizontal field indicates
whether the text advances horizontally in its major directimnifontal = TRUE, the default) or vertically in its

major direction lorizontal = FALSE). ThdeftToRight andtopToBottom fields indicate direction of text advance in

the major (characters within a single string) and minor (successive strings) axes of layout. Which field is used for
the major direction and which is used for the minor direction is determined bhgrizental field.

For horizontal textHhorizontal = TRUE), characters on each line of text advance in the positive X direction if
leftToRight is TRUE or in the negative X directionldftToRight is FALSE. Characters are advanced according to
their natural advance width. Each line of characters is advanced in the negative Y dirémpitoBidttom is TRUE

or in the positive Y direction opToBottomis FALSE. Lines are advanced by the amourstzefx spacing.

For vertical text forizontal = FALSE), characters on each line of text advance in the negative Y direction if
topToBottom is TRUE or in the positive Y direction tibpToBottom is FALSE. Characters are advanced according
to their natural advance height. Each line of characters is advanced in the positive X dirdeftdoRight is
TRUE or in the negative X directionliftToRight is FALSE. Lines are advanced by the amoursizefx spacing.

Thejudify field determines alignment of the above text layout relative to the origin of the object coordinate system.
Thejudtify field is an MFString which can contain 2 values. The first value spealfgggment along the major axis

and the second value specifies alignment along the minor axis, as determinechbriztintal field. An empty

judtify value (") is equivalent to the default value. If the second string, minor alignment, is not specified, minor
alignment defaults to the vallid-IRST". Thus,justify values of'", "BEGIN", and["BEGIN" "FIRST"] are
equivalent.

The major alignment is along the X-axis whemizontal is TRUE and along the Y-axis whaorizontal is FALSE.

The minor alignment is along the Y-axis whHemizontal is TRUE and along the X-axis wheorizontal is FALSE.

The possible values for each enumerant ofjtiséfy field are” FIRST", "BEGIN", "MIDDLE", and"END".

For major alignment, each line of text is positioned individually according to the major alignment enumerant. For
minor alignment, the block of text representing all lines together is positioned according to the minor alignment
enumerantTables 6.2-6.%8lescribe the behaviour in terms of which portion of the text is at the origin

Table6.2 -- Major Alignment, horizontal = TRUE

justify Enumer ant leftToRight = TRUE leftToRight = FAL SE
FIRST Left edge of each line Right edge of each line
BEGIN Left edge of each line Right edge of each line
MIDDLE Centred about X-axis Centred about X-axis
END Right edge of each line Left edge of each line

90



Copyright © The VRML Consortium Incorporated

ISO/IEC 14772-1:1997(E)

Table6.3 -- Major Alignment, horizontal = FAL SE

justify Enumer ant topToBottom = TRUE topToBottom = FAL SE
FIRST Top edge of each line Bottom edge of each line
BEGIN Top edge of each line Bottom edge of each line
MIDDLE Centred about Y-axis Centre about Y-axis
END Bottom edge of each line Top edge of each line

Table 6.4 -- Minor Alignment, horizontal = TRUE

justify Enumer ant topToBottom = TRUE topToBottom = FAL SE
FIRST Baseline of first line Baseline of first line
BEGIN Top edge of first line Bottom edge of first line
MIDDLE Centred about Y-axis Centred about Y-axis
END Bottom edge of last line Top edge of last line
Table 6.5 -- Minor Alignment, horizontal = FAL SE

justify Enumer ant leftToRight = TRUE leftToRight = FAL SE
FIRST Left edge of first line Right edge of first line
BEGIN Left edge of first line Right edge of first line
MIDDLE Centred about X-axis Centred about X-axis
END Right edge of last line Left edge of last line

The default minor alignment i=IRST" . This is a special case of minor alignment wherzontal is TRUE. Text
starts at the baseline at the Y-axis. In all other c4$¢RST" is identical td'BEGIN". In Tables 6.6 and 6, 2ach
colour-coded cross-hair indicates where the X-axis and Y-axis shall be in relation to thégiext.6.8describes
the symbols used in Tables 6.6 and 6.7.

91



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Key

%4 minor = "FIRST" <+ minor = "BEGIN"
A minor = "MIDDLE” % minor = "END"

Figure 6.8 -- Key for Tables6.6 and 6.7

Table 6.6 -- horizontal = TRUE

major = "BEGIN" or "FIRST" major = "MIDDLE" major = "END”
leftToRight leftToRight leftToRight
TRUE FALSE TRUE FALSE TRUE FALSE
= i gad dae 7y %‘d d%& Fea i +ElE-R
E E é};‘;& IIte:'»:’c tXth enéo% a0 ta;xt txqet oa AOME texdﬁ ﬁ(et £ 02
g ;ﬁ y! lya Oet’K toglﬁj. .}rgﬁlot toda}r* _:Ibladot
F‘; ko) ;ﬁoda}r! !‘_i,rslu;:l-:m?k toag‘_i,r! Yyadot ’c-::u::lsl‘_i,r?F >I,T‘_i,.rsln::l-:nl’c
o g Hjome text | tret emodH sompgtext | bretfnos some texEH [FHet emos
ey d_REEld udELﬂFLl_$ léqu dg% Rea%_ %BR

Mote: The "FIRST" minor axis marker € is offset from the "BEGIM" minor axis marker -+
in cases that they are coincident for presentation pumposes anly.

92



Copyright © The VRML Consortium Incorporated

Table 6.7 -- horizontal = FALSE

ISO/IEC 14772-1:1997(E)

major ="BEGIN" or "FIRST major ="MIDDLE" major ="END"
leftToRight leftToRight leftToRight
TRUE FALSE TRUE FALSE TRUE FALSE
QI-R Ig:l t* *t I;l R—'ﬁD g 8 g 8
g o O a o 8 o ;0 a a
g md dm = p o oM p Il I
g d e a a e d . & ik -kd & o e t t e
Y ¥ tH H = o o
= £ bt él:j p 2 2t 3$ Rt d d tR
& & & i’r E;’ & g & & a & &
=i x x x X a8 X ¥ ¥ x a
g t t t t Pd ! ' d
£ 0% | E
jwa]
c &
F% t t t t g Hor | N B
+ X X X y X a x ¥ ¥y x a
& & d e T B d e & 4 a g &
e o bt ot ;’ Yot y Rt d d tR
2 y | ¥ ge B K By o | ©
i d g a a e d RE 5 o R e t t e
g md dm = m | L m Il I
g O O o 0 8 o] o] o o]
E. t t E 8 g g a
(§|- B S|+ & +¢,

Mote: In every case, the "FIRST" minor axis marker & is coincident with the "BEGIN" minor

axis marker-+ (andis offset for presentation purposes only).

6.20.4 Language

The language field specifies the context of the language for the text string. Due to the multilingual nature of the
ISO/IEC 10646-1:1993, thkanguage field is needed to provide a proper language attribute of the text string. The
format is based on RFC 1766: language[ territ@yl766] The value for the language tag is based on ISO
639:1988 (e.g., 'zh' for Chinese, 'jp' for Japanese, and 'sc’ for Swedish.) The territory tag is based on ISO 3166:1
country codes (e.g., TW' for Taiwan and 'CN' for China for the 'zh' Chinese language taglarifjtiage field is

empty ("), local language bindings are used.

See?2, Normative referencedor more information on RFC 176@.[1766), ISO/IEC 10646:19932([UTE8]),

ISO/IEC 639:199824.[1639]), and ISO 3166:1992([I3166).

93



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—

@6.21 Group
G oup {

eventln M-Node addChil dren

eventln M-Node renoveChil dren

exposedFi el d MFNode children []

field SFVec3f bboxCent er 000 # (-0, o)

field SFVec3f bboxSi ze -1 -1-1 # (0,0 or -1,-1,-1
}

A Group node contains children nodes without introducing a new transformation. It is equivalent to a Transform
node containing an identity transform.

More details on thehildren, addChildren, andremoveChildren fields and eventins can be founddirs.5, Grouping
and children nodes

The bboxCenter andbboxSze fields specify a bounding box that encloses the Group node's children. This is a hint
that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than
the actual bounding box of the children at any time. A defidnaltSze value, (-1, -1, -1), implies that the bounding

box is not specified and, if needed, is calculated by the browser. A descriptiorbbbtGenter andbboxSze fields

is contained irt.6.4, Bounding boxes

\.IF!.I'I'II_HTL_@—

®06.22 ImageT exture

| mgeTexture {

exposedField MFString url [
field SFBool repeat S TRUE
field SFBool repeat T TRUE

}

The ImageTexture node defines a texture map by specifying an image file and general parameters for mapping to
geometry. Texture maps are defined in a 2D coordinate system (s, t) that ranges from [0.0, 1.0] in both directions.
The bottom edge of the image corresponds to the S-axis of the texture map, and left edge of the image corresponds
to the T-axis of the texture map. The lower-left pixel of the image corresponds to s=0, t=0, and the top-right pixel of
the image corresponds to s=1, t=1. These relationships are depiEtgdran6.9

94



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

1.0 —

0.0 K *
0.0 10 &

Figure 6.9 -- Texture map coor dinate system

The texture is read from the URL specified by tinkefield. When theurl field contains no values ([]), texturing is
disabled. Browsers shall support the JPEG 2s¢8PEG] and PNG (se2. [PNG) image file formats. In addition,
browsers may support other image formats (e.g. CENCGM]) which can be rendered into a 2D image. Support
for the GIF format (se&. [GIF]) is also recommended (including transparency). Details omrthiield can be
found in4.5, VRML and the World Wide Web

See4.6.11, Texture map$or a general description of texture maps.

See4.14, Lighting modelfor a description of lighting equations and the interaction between textures, materials, anc
geometry appearance.

The repeatS andrepeatT fields specify how the texture wraps in the S and T directiomrepéatS is TRUE (the
default), the texture map is repeated outside the [0.0, 1.0] texture coordinate range in the S direction so that it fi
the shape. IfepeatSis FALSE, the texture coordinates are clamped in the S direction to lie within the [0.0, 1.0]
range. TheepeatT field is analogous to thespeatS field.

95



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—

®6.23 | ndexedFaceSet
I ndexedFaceSet {

eventln MFI nt 32 set_col or | ndex

eventln MFI nt 32 set _coor dl ndex

eventln MFI nt 32 set _nor mal | ndex

eventln MFI nt 32 set _t exCoor dl ndex

exposedFi el d SFNode col or NULL

exposedField SFNode coord NULL

exposedField SFNode nornal NULL

exposedFi el d SFNode texCoord NULL

field SFBool ccw TRUE

field MFI nt 32 col or | ndex [] #[-1, o)

field SFBool  col or Per Vert ex TRUE

field SFBool convex TRUE

field MFI nt 32 coor dl ndex [] # [-1, )

field SFFl oat creaseAngl e 0 # [0, o)

field MFI nt 32 nor mal | ndex [] # [-1, )

field SFBool  nor mal Per Vert ex TRUE

field SFBool solid TRUE

field MFI nt 32 t exCoor dl ndex [] # [-1, )

}

The IndexedFaceSet node represents a 3D shape formed by constructing faces (polygons) from vertices listed in the
coord field. Thecoord field contains a Coordinate node that defines the 3D vertices referenced dogriffi@dex

field. IndexedFaceSet uses the indices ircardindex field to specify the polygonal faces by indexing into the
coordinates in the Coordinate node. An index of "-1" indicates that the current face has ended and the next one
begins. The last face may be (but does not have to be) followed by a "-1" index. If the greatest index in the
coordindex field is N, the Coordinate node shall contain N+1 coordinates (indexed as 0 to N). Each face of the
IndexedFaceSet shall have:

a. atleast three non-coincident vertices;

b. vertices that define a planar polygon;

c. vertices that define a non-self-intersecting polygon.
Otherwise, The results are undefined.

The IndexedFaceSet node is specified in the local coordinate system and is affected by the transformations of its
ancestors.

Descriptions of thecoord, normal, and texCoord fields are provided in theCoordinate Normal and
TextureCoordinataodes, respectively.

Details on lighting equations and the interaction betwedor field, normal field, textures, materials, and
geometries are provided 414, Lighting model

If the color field is not NULL, it shall contain a Color node whose colours are applied to the vertices or faces of the
IndexedFaceSet as follows:

96



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

d. If colorPerVertex is FALSE, colours are applied to each face, as follows:

1. If the colorindex field is not empty, then one colour is used for each face of the IndexedFaceSet.
There shall be at least as many indices in ¢blerindex field as there are faces in the
IndexedFaceSet. If the greatest index indblerindex field is N, then there shall be N+1 colours
in the Color node. TheolorIndex field shall not contain any negative entries.

2. If the colorindex field is empty, then the colours in the Color node are applied to each face of the
IndexedFaceSet in order. There shall be at least as many colours in the Color node as there ¢
faces.

e. |If colorPerVertex is TRUE, colours are applied to each vertex, as follows:

1. If thecolorindex field is not empty, then colours are applied to each vertex of the IndexedFaceSet
in exactly the same manner that tdoerdindex field is used to choose coordinates for each vertex
from the Coordinate node. Thmlorindex field shall contain at least as many indices as the
coordindex field, and shall contain end-of-face markers (-1) in exactly the same places as the
coordindex field. If the greatest index in ttoelorindex field is N, then there shall be N+1 colours
in the Color node.

2. If thecolorindex field is empty, then theoordindex field is used to choose colours from the Color
node. If the greatest index in tieeordindex field is N, then there shall be N+1 colours in the
Color node.

If the color field is NULL, the geometry shall be rendered normally using the Material and texture defined in the
Appearance node (sdel4, Lighting modelfor details).

If the normal field is not NULL, it shall contain a Normal node whose normals are applied to the vertices or faces o
the IndexedFaceSet in a manner exactly equivalent to that described above for applying colours to vertices/fa
(wherenormal PerVertex corresponds toolorPerVertex andnormallndex corresponds toolorindex). If the normal

field is NULL, the browser shall automatically generate normals, ugieggseAngle to determine if and how
normals are smoothed across shared verticegl (8625, Crease angle fi¢ld

If the texCoord field is not NULL, it shall contain aextureCoordinat@mode. The texture coordinates in that node
are applied to the vertices of the IndexedFaceSet as follows:

f. If the texCoordindex field is not empty, then it is used to choose texture coordinates for each vertex of the
IndexedFaceSet in exactly the same manner thabtndindex field is used to choose coordinates for each
vertex from the Coordinate node. TtexCoordindex field shall contain at least as many indices as the
coordindex field, and shall contain end-of-face markers (-1) in exactly the same placescasrtiedex
field. If the greatest index in thexCoordindex field is N, then there shall be N+1 texture coordinates in the
TextureCoordinate node.

g. If the texCoordindex field is empty, then theoordindex array is used to choose texture coordinates from
the TextureCoordinate node. If the greatest index inctioedindex field is N, then there shall be N+1
texture coordinates in the TextureCoordinate node.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local coordinate system
bounding box of the shape. The longest dimension of the bounding box defines the S coordinates, and the n
longest defines the T coordinates. If two or all three dimensions of the bounding box are equal, ties shall be brok
by choosing the X, Y, or Z dimension in that order of preference. The value of the S coordinate ranges from 0 to
from one end of the bounding box to the other. The T coordinate ranges between 0 and the ratio of the secc
greatest dimension of the bounding box to the greatest dimeriSoure 6.10illustrates the default texture
coordinates for a simple box shaped IndexedFaceSet with an X dimension twice as large as the Z dimension :
four times as large as the Y dimensibigure 6.11illustrates the original texture image used on the IndexedFaceSet

used inFigure 6.10

97



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

(wl+ Kaize, v, 20+ Zsize )
fz=10,t= 0.5}

3= (x—x0)[ Kaize ¥
t={z—=0%} Zsize

(0, y, 200
f3=00,t=00)

Y size \

Faize

\‘,-f"‘f \ nsize » Zsize » Wsize

Figure 6.10 -- IndexedFaceSet texture default mapping

e m T

{s=1.0,t=05}

{(s=0.0,t= 0.0

Figure 6.11 -- ImageTexture for IndexedFaceSet in Figure 6.10

Subclausé.6.3, Shapes and geometpyovides a description of tlvew, solid, convex, andcreaseAngle fields.

98



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

97 _H'
wmmu‘fﬂ_ﬁ/—

®6.24 |ndexedL ineSet
I ndexedLi neSet {

eventln MFI nt 32 set_col orl ndex

eventln MFI nt 32 set _coor dl ndex

exposedFi el d SFNode col or NULL

exposedField SFNode coord NULL

field MFI nt 32 col or | ndex [] # [-1, o)

field SFBool  col or Per Vert ex TRUE

field MFI nt 32 coor dl ndex [] # [-1, o)

}

The IndexedLineSet node represents a 3D geometry formed by constructing polylines from 3D vertices specified
the coord field. IndexedLineSet uses the indices indterdindex field to specify the polylines by connecting
vertices from theoord field. An index of "-1" indicates that the current polyline has ended and the next one begins.
The last polyline may be (but does not have to be) followed by a "-1". IndexedLineSet is specified in the loce
coordinate system and is affected by the transformations of its ancestors.

Thecoord field specifies the 3D vertices of the line set and conta@soadinatenode.

Lines are not lit, are not texture-mapped, and do not participate in collision detection. The width of lines i
implementation dependent and each line segment is solid (i.e., not dashed).

If the color field is not NULL, it shall contain a Color node. The colours are applied to the line(s) as follows:

a. If colorPerVertex is FALSE:

1.

If the colorindex field is not empty, one colour is used for each polyline of the IndexedLineSet.
There shall be at least as many indices in dblerindex field as there are polylines in the
IndexedLineSet. If the greatest index in dokorindex field is N, there shall be N+1 colours in the
Color node. Theolorindex field shall not contain any negative entries.

If the colorindex field is empty, the colours from the Color node are applied to each polyline of
the IndexedLineSet in order. There shall be at least as many colours in the Color node as there a
polylines.

b. If colorPerVertex is TRUE:

1.

If the colorindex field is not empty, colours are applied to each vertex of the IndexedLineSet in
exactly the same manner that twerdindex field is used to supply coordinates for each vertex
from the Coordinate node. Thmlorindex field shall contain at least as many indices as the
coordindex field and shall contain end-of-polyline markers (-1) in exactly the same places as the
coordindex field. If the greatest index in thelorindex field is N, there shall be N+1 colours in

the Color node.

If the colorindex field is empty, thecoordindex field is used to choose colours from the Color
node. If the greatest index in tleordindex field is N, there shall be N+1 colours in the Color
node.

If the color field is NULL and there is a Material defined for the Appearance affecting this IndexedLineSet, the
emissiveColor of the Material shall be used to draw the lines. Details on lighting equations as they affect
IndexedLineSet nodes are described.it¥, Lighting model

99



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—
@®6.25 Inline
Inline {
exposedField MFString url [
field SFVec3f bboxCenter 0 0 O # (-0, o)
field SFVec3f bboxSi ze -1 -1-1 # (0,0 or -1,-1,-1
}

The Inline node is a grouping node that reads its children data from a location in the World Wide Web. Exactly
when its children are read and displayed is not defined (e.g. reading the children may be delayed until the Inline
node's bounding box is visible to the viewer). Thefield specifies the URL containing the children. An Inline

node with an empty URL does nothing.

Each specified URL shall refer to a valid VRML file that contains a list of children nodes, prototypes, and routes at
the top level as described4r6.5, Grouping and children nodd@#e results are undefined if the URL refers to a file
that is not VRML or if the VRML file contains non-children nodes at the top level.

If multiple URLs are specified, the browser may display a URL of a lower preference VRML file while it is
obtaining, or if it is unable to obtain, the higher preference VRML file. Details anrltfield and preference order
can be found id.5, VRML and the World Wide Web

The results are undefined if the contents of the URL change after it has been loaded.

The bboxCenter andbboxSze fields specify a bounding box that encloses the Inline node's children. This is a hint
that may be used for optimization purposes. The results are undefined if the specified bounding box is smaller than
the actual bounding box of the children at any time. A defidnoltSze value, (-1, -1, -1), implies that the bounding

box is not specified and if needed shall be calculated by the browser. A descriptiobboik@enter andbboxSze

fields is in4.6.4, Bounding boxes

\.IF!.I'I'II_HT{@—
@6.26 LOD
LOD {
exposedFi el d MFNode | evel []
field SFVec3f center 000 # (- o0, )
field MFFI oat range [1 # (0, «)
}

The LOD node specifies various levels of detail or complexity for a given object, and provides hints allowing
browsers to automatically choose the appropriate version of the object based on the distance from thdewskr. The
field contains a list of nodes that represent the same object or objects at varying levels of detail, ordered from
highest level of detail to the lowest level of detail. Thege field specifies the ideal distances at which to switch
between the levels. Subclauéé.5, Grouping and children nogdeontains details on the types of nodes that are
legal values fotevel.

The center field is a translation offset in the local coordinate system that specifies the centre of the LOD node for
distance calculations.

The number of nodes in thevel field shall exceed the number of values in rthiege field by one (i.e., N+1eve
values for Nrange values). Theange field contains monotonic increasing values that shall be greater than zero. In

100



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

order to calculate which level to display, first the distance is calculated from the viewer's location, transformed int
the local coordinate system of the LOD node (including any scaling transformations)céoténgoint of the LOD

node. Then, the LOD node evaluates the step funtcfidnto choose a level for a given valuedbfwhered is the
distance from the viewer position to the centre of the LOD node).

Let nrangesRy, Ry, Ry, ..., Ry.1, partition the domain (0,infinity) into n+1 subintervals given by (&), [Ro, Ry)... ,
[Rna, Hinfinity). Also, letn levelsLy, Ly, Ly, ...,L,1 be the values of the step function functigqd). The level node,
L(d), for a given distancd is defined as follows:

L(d) = Lo, if d < Ry,
Li+l, |f R| <= d < Rj+l, fOI’ '1 < | < n'l,
Lp-i, if d >= Ry

Specifying too few levels will result in the last level being used repeatedly for the lowest levels of detail. If more
levels than ranges are specified, the extra levels are ignored. An empty range field is an exception to this rule. T
case is a hint to the browser that it may choose a level automatically to maintain a constant display rate. Each v
in therange field shall be greater than the previous value.

LOD nodes are evaluated top-down in the scene graph. Only the descendants of the currently selected level
rendered. All nodes under an LOD node continue to receive and send events regardless of which LGRehizde's
active. For example, if an active TimeSensor node is contained within an inactive level of an LOD node, th
TimeSensor node sends events regardless of the LOD node's state.

97

\JHmL‘.lriﬁ/_

@6.27 Material

Materi al {
exposedFi el d SFFl oat anbientlntensity 0.2 # [0, 1]
exposedFi el d SFCol or diffuseCol or 0.8 0.8 0.8 # [0, 1]
exposedFi el d SFCol or emi ssi veCol or 000 # [0, 1]
exposedFi el d SFFI oat shi ni ness 0.2 # [0, 1]
exposedFi el d SFCol or specul ar Col or 000 # [0, 1]
exposedFi el d SFFl oat transparency 0 # [0, 1]

}

The Material node specifies surface material properties for associated geometry nodes and is used by the VRI
lighting equations during rendering. Subcladsks, Lighting modelcontains a detailed description of the VRML
lighting model equations.

All of the fields in the Material node range from 0.0 to 1.0.
The fields in the Material node determine how light reflects off an object to create colour:
a. Theambientintensity field specifies how much ambient light from light sources this surface shall reflect.
Ambient light is omnidirectional and depends only on the number of light sources, not their positions with
respect to the surface. Ambient colour is calculatemimbgentintensity x diffuseColor.

b. ThediffuseColor field reflects all VRML light sources depending on the angle of the surface with respect to
the light source. The more directly the surface faces the light, the more diffuse light reflects.

c. TheemissiveColor field models "glowing" objects. This can be useful for displaying pre-lit models (where
the light energy of the room is computed explicitly), or for displaying scientific data.

d. ThespecularColor andshininess fields determine the specular highlights (e.g., the shiny spots on an apple).
When the angle from the light to the surface is close to the angle from the surface to the viewer, th

101



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated
specularColor is added to the diffuse and ambient colour calculations. Lower shininess values produce soft
glows, while higher values result in sharper, smaller highlights.

e. Thetransparency field specifies how "clear" an object is, with 1.0 being completely transparent, and 0.0
completely opaque.

\.IF!.I'I'II_W@—
@®@6.28 MovieTexture
Movi eText ure {
exposedFi el d SFBool | oop FALSE
exposedFi el d SFFl oat speed 1.0 # (- 00, )
exposedField SFTine startTine 0 # (- 00, )
exposedField SFTime  stopTime 0 # (- 00, )
exposedField MFString url []
field SFBool repeat S TRUE
field SFBool repeatT TRUE
event Qut SFTi ne dur ati on_changed

event Qut SFBool i SActive
}

The MovieTexture node defines a time dependent texture map (contained in a movie file) and parameters for
controlling the movie and the texture mapping. A MovieTexture node can also be used as the source of sound data
for aSoundnode. In this special case, the MovieTexture node is not used for rendering.

Texture maps are defined in a 2D coordinate system (s, t) that ranges from 0.0 to 1.0 in both directions. The bottom
edge of the image corresponds to the S-axis of the texture map, and left edge of the image corresponds to the T-axis
of the texture map. The lower-left pixel of the image corresponds to s=0.0, t=0.0, and the top-right pixel of the
image corresponds to s=1.0, t=1TE@ure 6.12depicts the texture map coordinate system of the MovieTexture.

b
1.0 —

0.0 *
0.0 10 &

Figure 6.12 -- MovieT extur e node coor dinate system

Theurl field that defines the movie data shall support MPEG1-Systems (audio and video) or MPEG1-Video (video-
only) movie file format®.[MPEG] Details on thaurl field can be found id.5, VRML and the World Wide Web

MovieTexture nodes can be referenced by an Appearance textig's field (as a movie texture) and by a Sound
node'ssource field (as an audio source only).

102



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

See4.6.11, Texture map$or a general description of texture maps.

4.14, Lighting model contains details on lighting equations and the interaction between textures, materials, an
geometries.

As soon as the movie is loadedduration_changed eventOut is sent. This indicates the duration of the movie in
seconds. This eventOut value can be read (for instance, by a Script node) to determine the duration of a movie
value of "-1" implies the movie has not yet loaded or the value is unavailable for some reason.

Theloop, startTime, andstopTime exposedFields and thgActive eventOut, and their effects on the MovieTexture
node, are discussed in detail in thé.9, Time-dependent nodesection. The cyclef a MovieTexture node is the
length of time in seconds for one playing of the movie at the spegpied.

The speed exposedField indicates how fast the movie shall be playegeddl of 2 indicates the movie plays twice
as fast. Theluration_changed output is not affected by thspeed exposedFieldset_speed events are ignored while
the movie is playing. A negativgpeed implies that the movie will play backwards.

If a MovieTexture node is inactive when the movie is first loaded, frame O of the movie texture is disHpget! if
is non-negative or the last frame of the movie texture is showpedtl is negative (sed.11.3, Discrete and
continuous changgsA MovieTexture node shall display frame Osgfeed = 0. For positive values apeed, an
active MovieTexture node displays the frame at movie tiagefollows (i.e., in the movie's local time system with
frame O at time O witlspeed = 1):

t = (now - startTinme) nodul o (duration/speed)

If speed is negative, the MovieTexture node displays the frame at movie time:
t = duration - ((now - startTine) nodul o | duration/speed|)

When a MovieTexture node becomes inactive, the frame corresponding to the time at which the MovieTextul
became inactive will remain as the texture.

wmmu‘rﬂ_ﬁ}—
®6.29 Navigationlnfo
Navi gati onl nfo {
eventln SFBool set _bind
exposedFi el d MFFl oat avatarSi ze [0.25, 1.6, 0.75] # [0, «)
exposedFi el d SFBool headl i ght TRUE
exposedFi el d SFFl oat speed 1.0 # [0, o)
exposedField MFString type [ "WALK", "ANY"]
exposedField SFFloat wvisibilityLimt 0.0 # [0, )
event Cut SFBool i sBound

}

The Navigationinfo node contains information describing the physical characteristics of the viewer's avatar an
viewing model. Navigationinfo node is a bindable node &6€l0, Bindable children nodedhus, there exists a
Navigationinfo node stack in which the top-most Navigationinfo node on the stack is the currently bounc
Navigationinfo node. The current NavigationIinfo node is considered to be a child of the current Viewpoint nodt
regardless of where it is initially located in the VRML file. Whenever the current Viewpoint nodes changes, the
current Navigationinfo node shall be re-parented to it by the browser. Whenever the current Navigationinfo noc
changes, the new Navigationinfo node shall be re-parented to the current Viewpoint node by the browser.

If a TRUE value is sent to theet bind eventin of a NavigationIinfo node, the node is pushed onto the top of the
Navigationinfo node stack. When a Navigationinfo node is bound, the browser uses the fields of the NavigationIn

103



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

node to set the navigation controls of its user interface and the Navigationinfo node is conceptually re-parented
under the currently bound Viewpoint node. All subsequent scaling changes to the diergmbint node's
coordinate system automatically change aspects (see below) of the Navigationinfo node values used in the browser
(e.g., scale changes to any ancestors' transformations). A FALSE value senbitad pops the Navigationinfo

node from the stack, results in mBound FALSE event, and pops to the next entry in the stack which shall be re-
parented to the current Viewpoint node5.10, Bindable children noddsas more details on binding stacks.

Thetype field specifies an ordered list of navigation paradigms that specify a combination of navigation types and
the initial navigation type. The navigation type of the currently bound Navigationinfo node determines the user
interface capabilities of the browser. For example, if the currently bound Navigationinfo typd&ss'"WALK", the

browser shall present a WALK navigation user interface paradigm (see below for description of WALK). Browsers
shall recognize and support at least the following navigation typésy", "WALK", "EXAMINE", "FLY", and

"NONE".

If "ANY" does not appear in thiype field list of the currently bound Navigationinfo, the browser's navigation user
interface shall be restricted to the recognized navigation types specified in the list. In this case, browsers shall not
present a user interface that allows the navigation type to be changed to a type not specified in the list. However, if
any one of the values in tligoe field are "ANY", the browser may provide any type of navigation interface, and
allow the user to change the navigation type dynamically. Furthermore, the first recognized type in the list shall be
the initial navigation type presented by the browser's user interface.

ANY navigation specifies that the browser may choose the navigation paradigm that best suits the content and
provide a user interface to allow the user to change the navigation paradigm dynamically. The results are undefined
if the currently bound Navigationinfotgpe value is "ANY" and Viewpoint transitions (s€&e53, Viewpoin} are

triggered by the Anchor node (se&.2, Anchoj or the | oadURL()scripting method (see
4.12.10, Browser script interfgce

WALK navigation is used for exploring a virtual world on foot or in a vehicle that rests on or hovers above the
ground. It is strongly recommended that WALK navigation define the up vector in the +Y direction and provide
some form of terrain following and gravity in order to produce a walking or driving experience. If the bound
NavigationInfo'stype is "WALK", the browser shall strictly support collision detection @& Collisior).

FLY navigation is similar to WALK except that terrain following and gravity may be disabled or ignored. There
shall still be some notion of "up” however. If the bound Navigationlityps is "FLY", the browser shall strictly
support collision detection (sée8, Collisior).

EXAMINE navigation is used for viewing individual objects and often includes (but does not require) the ability to
spin around the object and move the viewer closer or further away.

NONE navigation disables and removes all browser-specific navigation user interface forcing the user to navigate
using only mechanisms provided in the scene, such as Anchor nodes or scripts thal oeodidel () .

If the Navigationinfo type is "WALK", "FLY", "EXAMINE", or "NONE" or a combination of these types (i.e.,
"ANY" is not in the list), Viewpoint transitions (se€.53, Viewpoin} triggered by the Anchor node (see

6.2, Anchoj or thel oadURL() scripting method (se€.12.10, Browser script interfgcshall be implemented as a
jump cut from the old Viewpoint to the new Viewpoint with transition effects that shall not trigger events besides
the exit and enter events caused by the jump.

Browsers may create browser-specific navigation type extensions. It is recommended that éypendaches
include a unique suffix (e.g., HELICOPTER_mydomain.com) to prevent conflicts. Viewpoint transitions (see
6.53, Viewpoin} triggered by the Anchor node (%€, Anchoj or the | oadURL() scripting method (see
4.12.10, Browser script interfgcare undefined for extended navigation types. If none of the types are recognized
by the browser, the default "ANY" is used. These strings values are case sensitive ("any" is not equal to "ANY").

The speed field specifies the rate at which the viewer travels through a scene in metres per second. Since browsers
may provide mechanisms to travel faster or slower, this field specifies the default, average speed of the viewer when
the Navigationinfo node is bound. If the Navigationitype is EXAMINE, speed shall not affect the viewer's

104



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

rotational speed. Scaling in the transformation hierarchy of the currently boewdoint node (see above) scales

the speed; parent translation and rotation transformations have no effesgeeth Speed shall be non-negative. Zero
speed indicates that the avatar's position is stationary, but its orientation and field of view may still change. If tt
navigationtype is "NONE", thespeed field has no effect.

The avatarSze field specifies the user's physical dimensions in the world for the purpose of collision detection anc
terrain following. It is a multi-value field allowing several dimensions to be specified. The first value shall be the
allowable distance between the user's position and any collision geometry (as specifiealllsyoa node ) before

a collision is detected. The second shall be the height above the terrain at which the browser shall maintain |
viewer. The third shall be the height of the tallest object over which the viewer can move. This allows staircases
be built with dimensions that can be ascended by viewers in all browsers. The transformation hierarchy of tt
currently bound/iewpoint node scales thavatarSze. Translations and rotations have no effecaeatar Sze.

For purposes of terrain following, the browser maintains a notion afoilre direction (down vector), since gravity

is applied in the direction of the down vector. This down vector shall be along the negative Y-axis in the loca
coordinate system of the currently bound Viewpoint node (i.e., the accumulation of the Viewpoint node's ancesto
transformations, not including the Viewpoint nod#ientation field).

Geometry beyond the visibilityLimit may not be rendered. A value of 0.0 indicates an infinite visibility limit. The
visihilityLimit field is restricted to be greater than or equal to zero.

The speed, avatarSze andvisibilityLimit values are all scaled by the transformation being applied to the currently
bound Viewpoint node. If there is no currently bound Viewpoint node, the values are interpreted in the world
coordinate system. This allows these values to be automatically adjusted when binding to a Viewpoint node that
a scaling transformation applied to it without requiring a new Navigationinfo node to be bound as well. The resul
are undefined if the scale applied to the Viewpoint node is non-uniform.

The headlight field specifies whether a browser shall turn on a headlight. A headlight is a directional light that
always points in the direction the user is looking. Setting this field to TRUE allows the browser to provide &
headlight, possibly with user interface controls to turn it on and off. Scenes that enlist precomputed lightin
(e.g., radiosity solutions) can turn the headlight off. The headlight shall impersity =1, color = (11 1),
ambientintensity = 0.0, anddirection = (0 O -1).

It is recommended that the near clipping plane be set to one-half of the collision radius as specifiediar Sz

field (setting the near plane to this value prevents excessive clipping of objects just above the collision volume, a
also provides a region inside the collision volume for content authors to include geometry intended to remain fixe
relative to the viewer). Such geometry shall not be occluded by geometry outside of the collision volume.

meL.-*W{;_ﬁf}—
®6.30 Normal
Nor mal {
exposedFi el d MFVec3f vector [] # (-0, )
}

This node defines a set of 3D surface normal vectors to be used imctbe field of some geometry nodes
(e.g., IndexedFaceSet and ElevationGrid). This node contains one multiple-valued field that contains the norm
vectors. Normals shall be of unit length.

105



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—
®6.31 Normall nter polator
Nor mal | nt er pol at or {
eventin SFFl oat set _fraction # (-0, )
exposedFi el d MFFl oat key [] # (- 00, )
exposedFi el d MFVec3f keyVal ue [] # (- o0, )
event Qut M~Vec3f val ue_changed

}

The Normallnterpolator node interpolates among a list of normal vector sets specifiedkyMddge field. The
output vectoryalue_changed, shall be a set of normalized vectors.

Values in thekeyValue field shall be of unit length. The number of normals inky&/alue field shall be an integer
multiple of the number of keyframes in tkey field. That integer multiple defines how many normals will be
contained in thealue_changed events.

Normal interpolation shall be performed on the surface of the unit sphere. That is, the output values for a linear
interpolation from a point P on the unit sphere to a point Q also on the unit sphere shall lie along the shortest arc (on
the unit sphere) connecting points P and Q. Also, equally spaced input fractions shall result in arcs of equal length.
The results are undefined if P and Q are diagonally opposite.

A more detailed discussion of interpolators is providefl @8, Interpolator nodes

\.IF!.I'I'II_HT{@—
®6.32 Orientationl nter polator
Oientationlnterpol ator {
eventin SFFI oat set_fraction # (-0, 00)
exposedFi el d MFFI oat key [T # (-0, )
exposedFi el d MFRot ati on keyVal ue [T #1[-1,1], (-0, )
event Qut SFRot ati on val ue_changed

}

The OrientationInterpolator node interpolates among a list of rotation values specifieckag\ilee field. These
rotations are absolute in object space and therefore are not cumulativeyVee field shall contain exactly as
many rotations as there are keyframes irkdydield.

An orientation represents the final position of an object after a rotation has been applied. An Orientationinterpolator
interpolates between two orientations by computing the shortest path on the unit sphere between the two
orientations. The interpolation is linear in arc length along this path. The results are undefined if the two orientations
are diagonally opposite.

If two consecutivekeyValue values exist such that the arc length between them is greatenm, ttie interpolation
will take place on the arc complement. For example, the interpolation between the orientations (0, 1, 0, 0) and (0, 1,
0, 5.0) is equivalent to the rotation between the orientations (0, 1) &nd (0O, 1, 0, 5.0).

A more detailed discussion of interpolators is contain€ddr8, Interpolator nodes

106



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

‘\.IFII'I.'II_W@—
@6.33 Pixel Texture
Pi xel Texture {
exposedFi el d SFl mage i mage 000 # see 5.5, SFlnmage
field SFBool repeat S TRUE
field SFBool repeat T TRUE

}

The PixelTexture node defines a 2D image-based texture map as an explicit array of pixelagese(d) and
parameters controlling tiling repetition of the texture onto geometry.

Texture maps are defined in a 2D coordinate system (s, t) that ranges from 0.0 to 1.0 in both directions. The bott
edge of the pixel image corresponds to the S-axis of the texture map, and left edge of the pixel image correspond
the T-axis of the texture map. The lower-left pixel of the pixel image corresponds to s=0.0, t=0.0, and the top-rigl
pixel of the image corresponds to s = 1.0, t = 1.0.

Seed.6.11, Texture map$or a general description of texture magigure 6.13depicts an example PixelTexture.

1.0 —

0.0 i
0.0 10 %
Figure 6.13 -- Pixel Texture node

See4.14 ,Lighting modelfor a description of how the texture values interact with the appearance of the geometry
5.5, SFImagedescribes the specification of an image.

The repeatS andrepeatT fields specify how the texture wraps in the S and T directionrepéatS is TRUE (the
default), the texture map is repeated outside the 0-to-1 texture coordinate range in the S direction so that it fills t
shape. IfrepeatSis FALSE, the texture coordinates are clamped in the S direction to lie within the 0.0 to 1.0 range
TherepeatT field is analogous to threpeatSfield.

107



ISO/IEC 14772-1:1997(E)

®6.34 PlaneSensor

Pl aneSensor {
exposedFi el d
exposedFi el d
exposedFi el d
exposedFi el d
exposedFi el d
event Qut
event Qut
event Qut

SFBool
SFBool
SFVec 2f
SFVec 2f
SFVec 3f
SFBool
SFVec 3f
SFVec 3f

aut oOf f set

enabl ed

maxPosi tion

m nPosi tion

of f set

i SActive

t rackPoi nt _changed
transl ati on_changed

Copyright © The VRML Consortium Incorporated

a7
~RmLY 8 —

}

The PlaneSensor node maps pointing device motion into two-dimensional translation in a plane parallel to the Z=0
plane of the local coordinate system. The PlaneSensor node uses the descendent geometry of its parent node to
determine whether it is liable to generate events.

Theenabled exposedField enables and disables the PlaneSenawblkd is TRUE, the sensor reacts appropriately
to user events. lénabled is FALSE, the sensor does not track user input or send evemtwbléd receives a
FALSE event andisActive is TRUE, the sensor becomes disabled and deactivated, and outpsfistisa FALSE
event. Ifenabled receives a TRUE event, the sensor is enabled and made ready for user activation.

The PlaneSensor node generates events when the pointing device is activated while the pointer is indicating any
descendent geometry nodes of the sensor's parent groud.6Séé&, Activating and manipulating sensofer
details on using the pointing device to activate the PlaneSensor.

Upon activation of the pointing device (e.g., mouse button down) while indicating the sensor's georéiciivan

TRUE event is sent. Pointer motion is mapped into relative translation tirackieg plane, (a plane parallel to the
sensor's local Z=0 plane and coincident with the initial point of intersection). For each subsequent movement of the
bearing, atrandation_changed event is output which corresponds to the sum of the relative translation from the
original intersection point to the intersection point of the new bearing in the plane pbffsghealue. The sign of

the translation is defined by the Z=0 plane of the sensor's coordinate dyatkoint_changed events reflect the
unclamped drag position on the surface of this plane. When the pointing device is deactiveiet@ifstt is

TRUE, offset is set to the lagtandation_changed value and awnffset_changed event is generated. More details are
provided in4.6.7.4, Drag sensors

When the sensor generatesisfictive TRUE event, it grabs all further motion events from the pointing device until

it is deactivated and generatesiafictive FALSE event. Other pointing-device sensors shall not generate events
during this time. Motion of the pointing device whit&ctive is TRUE is referred to as a "drag." If a 2D pointing
device is in usejsActive events typically reflect the state of the primary button associated with the device
(i.e.,isActive is TRUE when the primary button is pressed, and is FALSE when it is released). If a 3D pointing
device (e.g., wand) is in usesActive events typically reflect whether the pointer is within or in contact with the
sensor's geometry.

minPosition andmaxPosition may be set to clamjpandation_changed events to a range of values as measured from

the origin of the Z=0 plane. If the X or Y component@hPosition is greater than the corresponding component of
maxPosition, trandation_changed events are not clamped in that dimension. If the X or Y component of
minPosition is equal to the corresponding componentnakPosition, that component is constrained to the given
value. This technique provides a way to implement a line sensor that maps dragging motion into a translation in one
dimension.

While the pointing device is activated and movedgckPoint_changed andtrandation _changed events are sent.
trackPoint_changed events represent the unclamped intersection points on the surface of the tracking plane. If the

108



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

pointing device is dragged off of the tracking plane while activated (e.g., above horizon line), browsers ma
interpret this in a variety ways (e.g., clamp all values to the horizon). Each movement of the pointing device, whil
isActive is TRUE, generatdsackPoint_changed andtrandation_changed events.

Further information about this behaviour can be fourdl6n7.3, Pointing-device senspfis6.7.4, Drag sensqrand
4.6.7.5, Activating and manipulating sensors

\.IF!.I'I'II_HTL_@—
®6.35 PointLight
Poi nt Li ght {
exposedFi el d SFFl oat anbientlntensity O # [0, 1]
exposedFi el d SFVec3f attenuation 100 #1][0,»)
exposedFi el d SFCol or col or 111 #7[0,1]
exposedFi el d SFFl oat intensity 1 # [0, 1]
exposedFi el d SFVec3f | ocation 000 # (-0,0)
exposedFi el d SFBool on TRUE
exposedFi el d SFFl oat radi us 100 # [0, «)

}

The PointLight node specifies a point light source at a 3D location in the local coordinate system. A point ligh
source emits light equally in all directions; that is, it is omnidirectional. PointLight nodes are specified in the loca
coordinate system and are affected by ancestor transformations.

Subclausé.6.6, Light sourcesontains a detailed description of #imbientl ntensity, color, andintensity fields.

A PointLight node illuminates geometry withiadius metres of itdocation. Both radius and location are affected
by ancestors' transformations (scales affadius and transformations affebtbcation). The radius field shall be
greater than or equal to zero.

PointLight node's illumination falls off with distance as specified by thtteauation coefficients. The attenuation
factor is1/max(attenuation] 0] + attenuation[1] x r + attenuation[2] x r? 1), wherer is the distance from the light

to the surface being illuminated. The default is no attenuatiomttémuation value of (0, O, 0) is identical to (1, O,

0). Attenuation values shall be greater than or equal to zero. A detailed description of VRML's lighting equations
contained iM.14, Lighting model

\.IF!.I'I'II_HTL_@—
@6.36 PointSet

Poi nt Set {
exposedFi el d SFNode col or NULL
exposedField SFNode coord NULL
}

The PointSet node specifies a set of 3D points, in the local coordinate system, with associated colours at each pc
The coord field specifies &Coordinatenode (or instance of a Coordinate node). The results are undefined if the
coord field specifies any other type of node. PointSet uses the coordinates in ordecotirthéeld is NULL, the

point set is considered empty.

109



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

PointSet nodes are not lit, not texture-mapped, nor do they participate in collision detection. The size of each point is
implementation-dependent.

If the color field is not NULL, it shall specify &olor node that contains at least the number of points contained in
thecoord node. The results are undefined if dobor field specifies any other type of node. Colours shall be applied

to each point in order. The results are undefined if the number of values in the Color node is less than the number of
values specified in the Coordinate node.

If the color field is NULL and there is a Material node defined for the Appearance node affecting this PointSet node,
theemissiveColor of the Material node shall be used to draw the points. More details on lighting equations can be
found in4.14, Lighting model

\.IF!.I'I'II_HTL_@—
®6.37 Positionl nterpolator
Posi tionl nterpol ator {
eventin SFFl oat set _fraction # (-0, )
exposedFi el d MFFl oat key [] # (- 00, )
exposedFi el d MFVec3f keyVal ue [] # (- o0, )
event Qut SFVec3f val ue_changed

}

The Positioninterpolator node linearly interpolates among a list of 3D vectorskeyWaue field shall contain
exactly as many values as in Hey field.

4.6.8, Interpolator nodesontains a more detailed discussion of interpolators.

\.IF!.I'I'II_HT{@—

®6.38 ProximitySensor
Proxi m tySensor {

exposedFi el d SFVec3f center 000 # (- o0, )

exposedFi el d SFVec3f si ze 000 # [0, o)

exposedFi el d SFBool enabl ed TRUE

event Qut SFBool i SActive

event Qut SFVec3f posi ti on_changed

event Qut SFRot ati on orientation_changed

event Qut SFTi ne enterTi me

event Qut SFTi ne exitTime

}

The ProximitySensor node generates events when the viewer enters, exits, and moves within a region in space
(defined by a box). A proximity sensor is enabled or disabled by sendingritlaied event with a value of TRUE
or FALSE. A disabled sensor does not send events.

A ProximitySensor node generaig8ctive TRUE/FALSE events as the viewer enters and exits the rectangular box
defined by itscenter andsize fields. Browsers shall interpolate viewer positions and timestamigAbtive events

with the exact time the viewer first intersected the proximity region.c@ter field defines the centre point of the
proximity region in object space. Tlsze field specifies a vector which defines the width (x), height (y), and depth

110



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

(z) of the box bounding the region. The components ofsiteefield shall be greater than or equal to zero.
ProximitySensor nodes are affected by the hierarchical transformations of their parents.

TheenterTime event is generated whenever ittctive TRUE event is generated (user enters the box)edtiime
events are generated whenevers&ative FALSE event is generated (user exits the box).

The position_changed andorientation_changed eventOuts send events whenever the user is contained within the
proximity region and the position and orientation of the viewer changes with respect to the ProximitySensor node
coordinate system including enter and exit times. The viewer movement may be a result of a variety
circumstances resulting from browser navigation, ProximitySensor node's coordinate system changes, or bou
Viewpoint node's position or orientation changes.

Each ProximitySensor node behaves independently of all other ProximitySensor nodes. Every enabl
ProximitySensor node that is affected by the viewer's movement receives and sends events, possibly resulting
multiple ProximitySensor nodes receiving and sending events simultaneously. Unlike TouchSensor nodes, there
no notion of a ProximitySensor node lower in the scene graph "grabbing"” events.

Instanced (DEF/USE) ProximitySensor nodes use the union of all the boxes to check for enter and exit. A multip
instanced ProximitySensor node will detect enter and exit for all instances of the box and send enter/exit evel
appropriately. However, the results are undefined if the any of the boxes of a multiply instanced ProximitySens
node overlap.

A ProximitySensor node that surrounds the entire world hastenTime equal to the time that the world was
entered and can be used to start up animations or behaviours as soon as a world is loaded. A ProximitySensor r
with a box containing zero volume (i.e., asige field element of 0.0) cannot generate events. This is equivalent to
setting theenabled field to FALSE.

A ProximitySensor read from a VRML file shall generegctive TRUE, position_changed, orientation_changed

and enterTime events if the sensor is enabled and the viewer is inside the proximity region. A ProximitySensot
inserted into the transformation hierarchy shall genésAttive TRUE, position_changed, orientation_changed and

enter Time events if the sensor is enabled and the viewer is inside the proximity region. A ProximitySensor remove
from the transformation hierarchy shall generective FALSE, position_changed, orientation changed and
exitTime events if the sensor is enabled and the viewer is inside the proximity region.

a7 e
'\.IFlmL..-”L._ﬁ;/—
®6.39 Scalarnter polator
Scal ar I nt er pol ator {
eventin SFFl oat set _fraction # (-, )
exposedFi el d MFFl oat key [] # (-0, )
exposedFi el d MFFl oat keyVal ue [] # (-, )
event Qut SFFl oat val ue_changed

}

This node linearly interpolates among a list of SFFloat values. This interpolator is appropriate for any paramet
defined using a single floating point value. Examples include width, radius, and intensity fieldtsy\Iddae field
shall contain exactly as many numbers as there are keyframesay fiedd.

A more detailed discussion of interpolators is availabke@n8, Interpolator nodes

111



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

'\.IF!H'!L.-‘”{@—
®6.40 Script
Script {
exposedField MFString url []
field SFBool di rect Qut put FALSE
field SFBool nmust Eval uate FALSE
# And any nunber of:
eventln event Type event Nanme
field fieldType fiel dNane initial Val ue
event Qut event Type event Nane
}

The Script node is used to program behaviour in a scene. Script nodes typically
a. signify a change or user action;
b. receive events from other nodes;
c. contain a program module that performs some computation;
d. effect change somewhere else in the scene by sending events.
Each Script node has associated programming language code, referencedrbjigltg that is executed to carry

out the Script node's function. That code is referred to as the "script” in the rest of this description. Detaild on the
field can be found id.5, VRML and the World Wide Web

Browsers are not required to support any specific language. Detailed information on scripting languages is described
in 4.12, Scripting Browsers supporting a scripting language for which a language binding is specified shall adhere
to that language binding.

Sometime before a scripégeives the first event it shall be initialized (any language-dependent redefised
initialize() is performed). The script is able to receive and process events that are sent to it. Each event that
can be received shall be declared in the Script node using the same syntax as is used in a proititype defin

eventln type name

Thetype can be any of the standard VRML fields (as define8,ifrield and event referejcdame shall be an
identifier that is unique for this Script node.

The Script node is able to generate events in response to the incoming events. Each event that may be generated
shall be declared in the Script node using the following syntax:

event Qut type nane
With the exception of therl field, exposedFields are not allowed in Script nodes.

If the Script node'snustEvaluate field is FALSE, the browser may delay sending input events to the script until its
outputs are needed by the browser. If tetEvaluate field is TRUE, the browser shall send input events to the
script as soon as possible, regardless of whether the outputs are needadtHVatuate field shall be set to TRUE

only if the Script node has effects that are not known to the browser (such as sending information across the
network). Otherwise, poor performance may result.

Once the script has access to a VRML node (via an SFNode or MFNode value either in one of the Script node's
fields or passed in as an eventin), the script is able to read the contents of that node's exposed fields. If the Script
node'sdirectOutput field is TRUE, the script may also send events directly to any node to which it has access, and

112



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

may dynamically establish or break routeglitectOutput is FALSE (the default), the script may only affect the rest
of the world via events sent through its eventOuts. The results are undefiivedt@®utput is FALSE and the script
sends events directly to a node to which it has access.

A script is able to communicate directly with the VRML browser to get information such as the current time and thi
current world URL. This is strictly defined by the API for the specific scripting language being used.

The location of the Script node in the scene graph has no affect on its operation. For example, if a parent of a Sci
node is a Switch node witlthichChoice set to "-1" (i.e., ignore its children), the Script node continues to operate as
specified (i.e., it receives and sends events).

\.IF!.I'I'II_HTL_@—
®6.41 Shape

Shape {
exposedFi el d SFNode appearance NULL
exposedFi el d SFNode geonetry NULL

}

The Shape node has two fielégpearance andgeometry, which are used to create rendered objects in the world.
The appearance field contains arAppearancenode that specifies the visual attributes (e.g., material and texture) to
be applied to the geometry. Theometry field contains a geometry node. The specified geometry node is rendered
with the specified appearance nodes applied. £, Shapes and geometignd 6.3, Appearancefor more
information.

4.14, Lighting modelcontains details of the VRML lighting model and the interaction between Appearance nodes
and geometry nodes.

If the geometry field is NULL, the object is not drawn.

\.IF!.I'I'II_HT{@—
®6.42 Sound
Sound {
exposedFi el d SFVec3f direction 001 # (- o0, )
exposedFi el d SFFloat intensity 1 # [0, 1]
exposedFi el d SFVec3f |ocation 000 # (-o00,0)
exposedFi el d SFFl oat naxBack 10 # [0, o)
exposedFi el d SFFl oat nmaxFront 10 # [0, o)
exposedFi el d SFFl oat m nBack 1 # [0, o)
exposedFi el d SFFl oat m nFront 1 # [0, o)
exposedFi el d SFFloat priority 0 #10,1]
exposedFi el d SFNode source NULL
field SFBool spatialize TRUE

}

The Sound node specifies the spatial presentation of a sound in a VRML scene. The sound is located at a point in
local coordinate system and emits sound in an elliptical pattern (defined by two ellipsoids). The ellipsoids ar
oriented in a direction specified by tHieection field. The shape of the ellipsoids may be modified to provide more
or less directional focus from the location of the sound.

113



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The source field specifies the sound source for the Sound node. Hotlree field is not specified, the Sound node

will not emit audio. Thesource field shall specify either an AudioClip node or a MovieTexture node. If a
MovieTexture node is specified as the sound source, the MovieTexture shall refer to a movie format that supports
sound (e.g., MPEG1-Systems, 2eMPEG)).

The intensity field adjusts the loudness (decibels) of the sound emitted by the Sound node (note: this is different
from the traditional definition of intensity with respect to sound;ESE@NDA]). Theintensity field has a value that

ranges from 0.0 to 1.0 and specifies a factor which shall be used to scale the normalized sample data of the sound
source during playback. A Sound node with an intensity of 1.0 shall emit audio at its maximum loudness (before
attenuation), and a Sound node with an intensity of 0.0 shall emit no audio. Between these values, the loudness
should increase linearly from a -20 dB change approachingemsity of 0.0 to a 0 dB change at antensity of 1.0.

Thepriority field provides a hint for the browser to choose which sounds to play when there are more active Sound
nodes than can be played at once due to either limited system resources or systén3.tha8ound priority,
attenuation, and spatializatiotescribes a recommended algorithm for determining which sounds to play under such
circumstances. Theriority field ranges from 0.0 to 1.0, with 1.0 being the highest priority and 0.0 the lowest
priority.

The location field determines the location of the sound emitter in the local coordinate system. A Sound node's
output is audible only if it is part of the traversed scene. Sound nodes that are descended from LOD, Switch, or any
grouping or prototype node that disables traversal d@rawing) of its children are not audible unless they are
traversed. If a Sound node is disabled by a Switch or LOD node, and later it becomes part of the traversal again, the
sound shall resume where it would have been had it been playing continuously.

The Sound node has an inner ellipsoid that defines a volume of space in which the maximum level of the sound is
audible. Within this ellipsoid, the normalized sample data is scaled lmt¢hsty field and there is no attenuation.

The inner ellipsoid is defined by extending tieection vector through théocation. The minBack and minFront

fields specify distances behind and in front of tbeation along thedirection vector respectively. The inner
ellipsoid has one of its foci &bcation (the second focus is implicit) and intersectsdirection vector atminBack
andminFront.

The Sound node has an outer ellipsoid that defines a volume of space that bounds the audibility of the sound. No
sound can be heard outside of this outer ellipsoid. The outer ellipsoid is defined by extendingrtioa vector

through thdocation. ThemaxBack andmaxFront fields specify distances behind and in front of libeation along
thedirection vector respectively. The outer ellipsoid has one of its focation (the second focus is implicit) and
intersects théirection vector atmaxBack andmaxFront.

TheminFront, maxFront, minBack, andmaxBack fields are defined in local coordinates, and shall be greater than or
equal to zero. ThainBack field shall be less than or equalnaxBack, andminFront shall be less than or equal

to maxFront. The ellipsoid parameters are specified in the local coordinate system but the ellipsoids' geometry is
affected by ancestors' transformations.

Between the two ellipsoids, there shall be a linear attenuation ramp in loudness, from 0 dB at the minimum ellipsoid
to -20 dB at the maximum ellipsoid:

attenuation = -20 x (d / d")
where d' is the distance along the location-to-viewer vector, measured from the transformed minimum ellipsoid

boundary to the viewer, and d" is the distance along the location-to-viewer vector from the transformed minimum
ellipsoid boundary to the transformed maximum ellipsoid boundaryHiseee 6.14.

114



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

F
P1 .
0B . P
' ho sound
| P3
-70dB I
| ", min ellipsaid max ellipsoid | g
h-, "-l. ..\. 11 I-' Pa.":'_'_,_,.,-'-"""
'.LL 11\ xl 11@//
minBack 4 " P1

\Iﬂigt_i,u_rlf

minFront —l-|

direction
-

ma=F ront —I-J
maxBack.

Figure 6.14 -- Sound node geometry

The gpatialize field specifies if the sound is perceived as being directionally located relative to the viewer. If the
spatialize field is TRUE and the viewer is located between the transformed inner and outer ellipsoids, the viewer’
direction and the relative location of the Sound node should be taken into account during playback. Details outlinir
the minimum required spatialization functionality can be found7iB.4, Sound priority, attenuation, and
spatialization If the spatialize field is FALSE, then directional effects are ignored, but the ellipsoid dimensions and
intensity will still affect the loudness of the sound. If the sound source is multi-channel (e.g., stereo), then the sour
should retain its channel separation during playback.

\.IF!.I'I'II_HTL_@—
®6.43 Sphere

Sphere {
field SFFloat radius 1 # (0, «)
}

The Sphere node specifies a sphere centred at (0, 0, 0) in the local coordinate systadiudfield specifies the
radius of the sphere and shall be greater than Eignare 6.15depicts the fields of the Sphere node.

115



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

5 = theta / 2P|
t=1- phiFl

Figure 6.15 -- Spherenode

When a texture is applied to a sphere, the texture covers the entire surface, wrapping counterclockwise from the
back of the sphere (i.e., longitudinal arc intersecting the -Z-axis) when viewed from the top of the sphere. The
texture has a seam at the back where the X=0 plane intersects the sphere and Z values are negative.
TextureTransfornaffects the texture coordinates of the Sphere.

The Sphere node's geometry requires outside faces only. When viewed from the inside the results are undefined.

a7 )
"x.IFlmL..-”(ﬁ/—
®6.44 SphereSensor
Spher eSensor {
exposedFi el d SFBool aut oOf f set TRUE
exposedFi el d SFBool enabl ed TRUE
exposedFi el d SFRot ati on of f set 0100 #[-1,1], (-, )
event Cut SFBool i SActive
event Cut SFRot ati on rotati on_changed
event Qut SFVec3f t rackPoi nt _changed

}

The SphereSensor node maps pointing device motion into spherical rotation about the origin of the local coordinate
system. The SphereSensor node uses the descendent geometry of its parent node to determine whether it is liable to
generate events.

The enabled exposed field enables and disables the SphereSensor nedebltd is TRUE, the sensor reacts
appropriately to user events.dfiabled is FALSE, the sensor does not track user input or send evestsbléd
receives a FALSE event arshctive is TRUE, the sensor becomes disabled and deactivated, and outjséistian
FALSE event. lienabled receives a TRUE event the sensor is enabled and ready for user activation.

116



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

The SphereSensor node generates events when the pointing device is activated while the pointer is indicating .
descendent geometry nodes of the sensor's parent groupl.Geé&, Activating and manipulating sensofsr
details on using the pointing device to activate the SphereSensor.

Upon activation of the pointing device (e.g., mouse button down) over the sensor's geomiatgiivenTRUE

event is sent. The vector defined by the initial point of intersection on the SphereSensor's geometry and the lo
origin determines the radius of the sphere that is used to map subsequent pointing device motion while draggi
The virtual sphere defined by this radius and the local origin at the time of activation is used to interpret subseque
pointing device motion and is not affected by any changes to the sensor's coordinate system while the senso
active. For each position of the bearingtatation_changed event is sent which corresponds to the sum of the
relative rotation from the original intersection point plus tffset value. trackPoint_changed events reflect the
unclamped drag position on the surface of this sphere. When the pointing device is deactivateédCiisdt is

TRUE, offset is set to the lagtotation _changed value and amffset_changed event is generated. Sée5.7.4, Drag
sensorsfor more details.

When the sensor generatesisfictive TRUE event, it grabs all further motion events from the pointing device until

it is released and generatesigfctive FALSE event (other pointing-device sensors shall not generate events during
this time). Motion of the pointing device whiigActive is TRUE is termed a "drag". If a 2D pointing device is in
use,isActive events will typically reflect the state of the primary button associated with the devicesAcEve is

TRUE when the primary button is pressed and FALSE when it is released). If a 3D pointing device (e.g., wand) is |
use,isActive events will typically reflect whether the pointer is within (or in contact with) the sensor's geometry.

While the pointing device is activatedrackPoint_ changed and rotation changed events are output.
trackPoint_changed events represent the unclamped intersection points on the surface of the invisible sphere. If th
pointing device is dragged off the sphere while activated, browsers may interpret this in a variety of ways (e.g
clamp all values to the sphere or continue to rotate as the point is dragged away from the sphere). Each movemer
the pointing device whilesActive is TRUE generatesackPoint_changed androtation_changed events.

Further information about this behaviour can be fourdl6n7.3, Pointing-device senspfis6.7.4, Drag sensqrand
4.6.7.5, Activating and manipulating sensors

wmmu‘rﬂ_ﬁ}—
®6.45 SpotLight

Spot Li ght {

exposedFi el d SFFl oat anbientlntensity O # [0, 1]
exposedFi el d SFVec3f attenuation 100 # [0, o)
exposedFi el d SFFl oat bean dt h 1.570796 # (0,1 2]
exposedFi el d SFCol or col or 111 # [0, 1]
exposedFi el d SFFl oat cut O f Angl e 0.785398 # (0,1 2]
exposedFi el d SFVec3f direction 00 -1 # (-0, )
exposedFi el d SFFl oat intensity 1 # [0, 1]
exposedFi el d SFVec3f | ocation 000 # (-0, )
exposedFi el d SFBool on TRUE

exposedFi el d SFFl oat radi us 100 # [0, o)

}

The SpotLight node defines a light source that emits light from a specific point along a specific direction vector an
constrained within a solid angle. Spotlights may illuminate geometry nodes that respond to light sources ar
intersect the solid angle defined by the SpotLight. Spotlight nodes are specified in the local coordinate system a
are affected by ancestors' transformations.

117



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

A detailed description ocaAmbientintensity, color, intensity, and VRML's lighting equations is provided 4n6.6,
Light sources More information on lighting concepts can be foundtii4, Lighting modelincluding a detailed
description of the VRML lighting equations.

Thelocation field specifies a translation offset of the centre point of the light source from the light's local coordinate
system origin. This point is the apex of the solid angle which bounds light emission from the given light source. The
direction field specifies the direction vector of the light's central axis defined in the local coordinate system.

Theon field specifies whether the light source emits lightrlis TRUE, the light source is emitting light and may
illuminate geometry in the scene.dt is FALSE, the light source does not emit light and does not illuminate any
geometry.

Theradius field specifies the radial extent of the solid angle and the maximum distanc&éation that may be
illuminated by the light source. The light source does not emit light outside this radiusdiiseshall be greater
than or equal to zero.

Both radius and location are affected by ancestors' transformations (scalesadffecaind transformations affect
location).

ThecutOffAngle field specifies the outer bound of the solid angle. The light source does not emit light outside of this
solid angle. ThéeamWidth field specifies an inner solid angle in which the light source emits light at uniform full
intensity. The light source's emission intensity drops off from the inner solid dsgleWidth) to the outer solid

angle €utOffAngle) as described in the following equations:

angle = the angle between the Spotlight’s direction vector
and the vector fromthe Spotlight |ocation to the point
to be illum nated

if (angle >= cutOfAngle):
multiplier =0
else if (angle <= beamWdth):
multiplier =1
el se:
multiplier = (angle - cutOffAngle) / (beamNdth - cut O f Angl e)

intensity(angle) = SpotLight.intensity x nultiplier

If the beamWidth is greater than theutOffAngle, beamWidth is defined to be equal to tleatOffAngle and the light
source emits full intensity within the entire solid angle definedub@ffAngle. Both beamWidth and cutOffAngle

shall be greater than 0.0 and less than or equatdrigure 6.16depicts thebeamWidth, cutOffAngle, direction,

location, andradius fields of the SpotLight node.

SpotLight illumination falls off with distance as specified by thattenuation coefficients. The attenuation factor is
1/max(attenuation[0] + attenuation[1] x r + attenuation[2] x r®, 1), wherer is the distance from the light to the
surface being illuminated. The default is no attenuationatfemuation value of (0, 0, 0) is identical to (1, O, 0).
Attenuation values shall be greater than or equal to zero. A detailed description of VRML's lighting equations is
contained ird.14, Lighting model

118



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

N -
—
-
-
—
| cutOffangle
_ | bearm Width
location | II
o -
! direction
!
!
{fT
[ Tam .
fullintensity 0.0 BNy
Hﬁ-\.
Figure 6.16 -- SpotLight node
\.IF!.I'I'II_HTL_@—
®6.46 Switch
Switch {
exposedFi el d M-Node choi ce [1
exposedFi el d SFI nt 32 whi chChoice -1 # [-1, o)
}

The Switch grouping node traverses zero or one of the nodes specifiedhni tedield.

4.6.5, Grouping and children nodeescribes details on the types of nodes that are legal valwbsifm:

ThewhichChoicefield specifies the index of the child to traverse, with the first child having indexwBidfiChoice
is less than zero or greater than the number of nodes ¢hdiwe field, nothing is chosen.

All nodes under a Switch continue to receive and send events regardless of the whiaeGlfoice. For example,

if an active TimeSensor is contained within an inactive choice of an Switch, the TimeSensor sends events regard|
of the Switch's state.

119



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

97
'\.IFlmL..-”{ﬁ/—

@6.47 Text
Text {

exposedField MString string [

exposedField SFNode fontStyle NULL

exposedField MFl oat Iength [] # [0, o)

exposedField SFFloat maxExtent 0.0 # [0, «)

}

6.47.1 Introduction

The Text node specifies a two-sided, flat text string object positioned in the Z=0 plane of the local coordinate system
based on values defined in the fontStyle field @&8, FontStylp Text nodes may contain multiple text strings
specified using the UTF-8 encoding as specified by ISO 10646-1:1993.[ld&@&8]). The text strings are stored in

the order in which the text mode characters are to be produced as defined by the parameters in the FontStyle node.

The text strings are contained in tteng field. ThefontSyle field contains onéontStylenode that specifies the
font size, font family and style, direction of the text strings, and any specific language rendering techniques used for
the text.

The maxExtent field limits and compresses all of the text strings if the length of the maximum string is longer than
the maximum extent, as measured in the local coordinate system. If the text string with the maximum length is
shorter than themaxExtent, then there is no compressing. The maximum extent is measured horizontally for
horizontal text FontStyle node: horizontal=TRUE) and vertically for vertical text FontStyle node:
horizontal=FALSE). ThemaxExtent field shall be greater than or equal to zero.

The length field contains an MFFloat value that specifies the length of each text string in the local coordinate
system. If the string is too short, it is stretched (either by scaling the text or by adding space between the characters).
If the string is too long, it is compressed (either by scaling the text or by subtracting space between the characters).
If a length value is missing (for example, if there are four strings but only three length values), the missing values
are considered to be 0. Theagth field shall be greater than or equal to zero.

Specifying a value of 0 for both tmeaxExtent andlength fields indicates that the string may be any length.

6.47.2 1 SO 10646-1:1993 Character Encodings

Characters in ISO 10646 (sBdUTF8]) are encoded in multiple octets. Code space is divided into four units, as
follows:

ISO 10646-1:1993 allows two basic forms for characters:

a. UCS-2 (Universal Coded Character Set-2). This form is also known as the Basic Multilingual Plane (BMP).
Characters are encoded in the lower two octets (row and cell).

b. UCS-4 (Universal Coded Character Set-4). Characters are encoded in the full four octets.
In addition, three transformation formats (UCS Transformation Format or UTF) are accepted: UTF-7, UTF-8, and

UTF-16. Each represents the nature of the transformation: 7-bit, 8-bit, or 16-bit. UTF-7 and UTF-16 are referenced
in 2.[UTF8].

120



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)
UTF-8 maintains transparency for all ASCII code values (0...127). It allows ASCII text (0x0..0x7F) to appear
without any changes and encodes all characters from 0x80.. Ox7FFFFFFF into a series of six or fewer bytes.

If the most significant bit of the first character is 0, the remaining seven bits are interpreted as an ASCII characts
Otherwise, the number of leading 1 bits indicates the number of bytes following. There is always a zero bit betwe:

the count bits and any data.

The first byte is one of the following. The X indicates bits available to encode the character:

OXXXXXXX only one byte 0..0x7F (ASC 1)

110XXXXX two byt es Maxi mum char acter value is Ox7FF
1110XXXX t hree bytes Maxi mum char act er val ue i s OxFFFF
11110XXX four bytes Maxi mum char acter val ue i s Ox1FFFFF
111110XX five bytes Maxi mum char act er val ue i s Ox3FFFFFF
1111110X si x bytes Maxi mum char act er val ue i s Ox7FFFFFFF

All following bytes have the format LZOXXXXXX.

As a two byte example, the symbol for a register trade mark is &REG; or 174 in 1SO Latin21[I@#%9). It is
encoded as 0x00AE in UCS-2 of ISO 10646. In UTF-8, it has the following two byte encoding: 0xC2, OXAE.

6.47.3 Appear ance

Textures are applied to text as follows. The texture origin is at the origin of the first string, as determined by th
justification. The texture is scaled equally in both S and T dimensions, with the font height representing 1 unit. -
increases to the right, and T increases up.

4.14, Lighting modelhas details on VRML lighting equations and how Appearance, Material and textures interact
with lighting.

The Text node does not participate in collision detection.

meL.-*W{;_ﬁf}—
@6.48 TextureCoordinate
Text ureCoordi nate {
exposedFi el d MFVec2f point [] # (- 00, )

}

The TextureCoordinate node specifies a set of 2D texture coordinates used by vertex-based geometry no
(e.g.,IndexedFaceSetndElevationGrid to map textures to vertices. Textures are two dimensional colour functions
that, given ar{s, t) coordinate, return a colour valaeour(s, t). Texture map valuesnfjageTextureMovieTexture
andPixelTexturé range from [0.0, 1.0] along the S-axis and T-axis. However, TextureCoordinate values, specifiec
by thepoint field, may be in the rangec{;0). Texture coordinates identify a location (and thus a colour value) in
the texture map. The horizontal coordingie specified first, followed by the vertical coordinate

If the texture map is repeated in a given direction (S-axis or T-axis), a texture coordinate C (s or t) is mapped intc
texture map that has N pixels in the given direction as follows:

Texture map location = (C - floor(C)) x N

If the texture map is not repeated, the texture coordinates are clamped to the 0.0 to 1.0 range as follows:

121



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Texture map | ocation | if C>1
. 0, if C<O.
x N, if 0.0
Details on repeating textures are specific to texture map node types describg@@2idmageTexture

6.28, MovieTextureand6.33, PixelTexture

i
ooz

T )
meL.-”L_ﬁ;/—
®6.49 TextureTransform
Text ureTransform {
exposedFi el d SFVec2f center 00 # (- o0, )
exposedFi el d SFFl oat rotation 0 # (- o0, )
exposedFi el d SFVec2f scal e 11 # (- oo, )
exposedFi el d SFVec2f translation 0 0 # (- o0, )

}

The TextureTransform node defines a 2D transformation that is applied to texture coordinates (see
6.48, TextureCoordinateThis node affects the way textures coordinates are applied to the geometric surface. The
transformation consists of (in order):

a. atranslation;
b. arotation about the centre point;

c. anon-uniform scale about the centre point.

These parameters support changes to the size, orientation, and position of textures on shapes. Note that these
operations appear reversed when viewed on the surface of geometry. For exaoapdeyalue of (2 2) will scale

the texture coordinates and have the net effect of shrinking the texture size by a factor of 2 (texture coordinates are

twice as large and thus cause the texture to repeat). A translation of (Qu%uis@tes the texture coordinates +.5

units along the S-axis and has the net effect of translating the texture -0.5 along the S-axis on the geometry's surface.
A rotation ofv2 of the texture coordinates results im#&-rotation of the texture on the geometry.

The center field specifies a translation offset in texture coordinate space about whicbtatien and scale fields

are applied. Thecale field specifies a scaling factor in S and T of the texture coordinates abawgntérepoint.

scale values shall be in the rangeo(e0). Therotation field specifies a rotation in radians of the texture coordinates
about thecenter point after the scale has been applied. A positive rotation value makes the texture coordinates rotate
counterclockwise about the centre, thereby rotating the appearance of the texture itself clockwisadatien

field specifies a translation of the texture coordinates.

In matrix transformation notation, whefe is the untransformed texture coordindl€, is the transformed texture
coordinateC (center), T (trandation), R (rotation), andS (scale) are the intermediate transformation matrices,

Tc’ =-Cx Sx RxCxTxTc

Note that this transformation order is the reverse of the Transform node transformation order since the texture
coordinates, not the texture, are being transformed (i.e., the texture coordinate system).

122



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

wmmu‘rﬂ_ﬁ}—
@®6.50 TimeSensor
Ti meSensor {
exposedField SFTime cyclelnterval 1 # (0, o)
exposedFi el d SFBool enabl ed TRUE
exposedFi el d SFBool | oop FALSE
exposedField SFTine startTine 0 # (- o0, )
exposedField SFTime  stopTine 0 # (-0, )
event Qut SFTi ne cycl eTi me
event Cut SFFl oat fracti on_changed # [0, 1]
event Cut SFBool i SActive
event Cut SFTime tinme

}

TimeSensor nodes generate events as time passes. TimeSensor nodes can be used for many purposes including
a. driving continuous simulations and animations;
b. controlling periodic activitiesg(g., one per minute);
c. initiating single occurrence events such as an alarm clock.

The TimeSensor node contains two discrete event@itive andcycleTime. TheisActive eventOut sends TRUE
when the TimeSensor node begins running, and FALSE when it stops runnirogcl€fieme eventOut sends a time
event astartTime and at the beginning of each new cycle (useful for synchronization with other time-based objects)
The remaining eventOuts generate continuous eventsfra¢teon_changed eventOut, an SFFloat in the closed
interval [0,1], sends the completed fraction of the current cycle.tififeeeventOut sends the absolute time for a
givensimulation tick.

If the enabled exposedField is TRUE, the TimeSensor node is enabled and may be runnisey. éhabled FALSE
event is received while the TimeSensor node is running, the sensor performs the following actions:

d. evaluates and sends all relevant outputs;
e. sends a FALSE value fisActive;
f. disables itself.

Events on the exposedFields of the TimeSensor node sgt.gtartTime) are processed and their corresponding
eventOuts (e.gstartTime_changed) are sent regardless of the state ofdibled field. The remaining discussion
assumesnabled is TRUE.

The loop, startTime, and stopTime exposedFields and theActive eventOut and their effects on the TimeSensor
node are discussed in detail 6.9, Time-dependent node¥he "cyclé of a TimeSensor node lasts for
cyclelnterval seconds. The value ofclelnterval shall be greater than zero.

A cycleTime eventOut can be used for synchronization purposes such as sound with animation. The value of
cycleTime eventOut will be equal to the time at the beginning of the current cyclgiclaTime eventOut is
generated at the beginning of every cycle, including the cycle starttagtatme. The firstcycleTime eventOut for

a TimeSensor node can be used as an alarm (single pulse at a specified time).

When a TimeSensor node becomes active, it generateg\adive = TRUE event andbegins generatingime,
fraction_changed, and cycleTime events which may be routed to other nodes to drive animation or simulated
behaviours. The behaviour at read time is described belowtinéevent sends the absolute time for a given tick of

123



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

the TimeSensor nodéirge fields and events represent the number of seconds since midnight GMT January 1,
1970).

fraction_changed events output a floating point value in the closed interval [0, 1]st#tTime the value of
fraction_changed is 0. AfterstartTime, the value offraction_changed in any cycle will progress through the range
(0.0, 1.0]. AtgartTime+ N x cyclelnterval, for N = 1, 2, ..., that is, at the end of every cycle, the value of
fraction_changed is 1.

Let now represent the time at the current simulation tick. Thetitheeandfraction_changed eventOutscan then be
computed as:
tinme
tenp (now - startTinme) / cyclelnterval
f fractional Part (tenp)
if (f == 0.0 & now > startTinme) fraction_changed = 1.0
el se fraction_changed = f

now

where fracti onal Part (x) is a function that returns the fractional part, (that is, the digits to the right of the
decimal point), of a nonnegative floating point number.

A TimeSensor node can be set up to be active at read time by spet¢dgmm@RUE (not the default) and
stopTime less than or equal wartTime (satisfied by the default values). Ttime events output absolute times for

each tick of the TimeSensor node simulation. Tihve events shall start at the first simulation tick greater than or
equal tostartTime. time events end attopTime, or atstartTime + N x cyclelnterval for some positive integer value

of N, or loop forever depending on the values of the other fields. An active TimeSensor node shall stop at the first
simulation tick whemow >= stopTime > startTime.

No guarantees are made with respect to how often a TimeSensor node generates time events, but a TimeSensor node
shall generate events at least at every simulation tick. TimeSensor nodes are guaranteed to gerieratartfihal
fraction_changed events. If loop is FALSE at the end of théth cycleinterval and was TRUE at
startTime + M x cyclelnterval for all 0< M <N, the final time event will be generated with a value of
(startTime + N x cyclelnterval) or stopTime (if stopTime > startTime), whichever value is less. 1bop is TRUE at

the completion of every cycle, the final event is generated as evaluatepTaime (if stopTime > gartTime) or

never

An active TimeSensor node ignorest_cyclelnterval andset_startTime events. An active TimeSensor node also
ignoresset_stopTime events forset_stopTime less than or equal sbartTime. For example, if aet_startTime event

is received while a TimeSensor node is active, teatstartTime event is ignored (thetartTime field is not
changed, and startTime_changed eventOut is not generated). If an active TimeSensor node recestestepTime
event that is less than the current time, and greatersthgiiime, it behaves as if thetopTime requested is the
current time and sends the final events based on the current time (nat®ghiate is set as specified in the
eventin).

A TimeSensor read from a VRML file shall generiatective TRUE, time andfraction_changed events if the sensor
is enabled and all conditions for a TimeSensor to be active are met.

124



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

'\.IF!H'!L.-‘”{@—

@6.51 TouchSensor
TouchSensor {

exposedFi el d SFBool enabl ed TRUE

event Qut SFVec3f hit Normal changed

event Qut SFVec3f hitPoint_changed

event Qut SFVec2f hit TexCoord_changed

event Qut SFBool isActive

event Qut SFBool isOver

event Qut SFTine touchTinme

}

A TouchSensor node tracks the location and state of the pointing device and detects when the user points
geometry contained by the TouchSensor node's parent group. A TouchSensor node can be enabled or disable
sending it arenabled event with a value of TRUE or FALSE. If the TouchSensor node is disabled, it does not track
user input or send events.

The TouchSensor generates events when the pointing device points toward any geometry nodes that are descen
of the TouchSensor's parent group. &e7.5, Activating and manipulating sensdos more details on using the
pointing device to activate the TouchSensor.

The isOver eventOut reflects the state of the pointing device with regard to whether it is pointing towards the
TouchSensor node's geometry or not. When the pointing device changes state from a position such that its beal
does not intersect any of the TouchSensor node's geometry to one in which it does intersect geois@ey, an
TRUE event is generated. When the pointing device moves from a position such that its bearing intersects geome
to one in which it no longer intersects the geometry, or some other geometry is obstructing the TouchSensor nod
geometry, arisOver FALSE event is generated. These events are generated only when the pointing device he
moved and changed “over' state. Events are not generated if the geometry itself is animating and moving undern
the pointing device.

As the user moves the bearing over the TouchSensor node's geometry, the point of intersection (if any) between
bearing and the geometry is determined. Each movement of the pointing devicas@gteis TRUE, generates
hitPoint_changed, hitNormal_changed andhitTexCoord_changed events.hitPoint_changed events contain the 3D
point on the surface of the underlying geometry, given in the TouchSensor node's coordinate syster
hitNormal_changed events contain the surface normal vector athttReoint. hitTexCoord changed events contain

the texture coordinates of that surface athitieoint. The values ohitTexCoord_changed andhitNormal _changed

events are computed as appropriate for the associated shape.

If isOver is TRUE, the user may activate the pointing device to cause the TouchSensor node to igaokvate
events (e.g., by pressing the primary mouse button). When the TouchSensor node genshatage aiRUE event,

it grabs all further motion events from the pointing device until it is released and geneiigfesiemFALSE event

(other pointing-device sensors will not generate events during this time). Motion of the pointing device while
isActive is TRUE is termed a "drag." If a 2D pointing device is in isktive events reflect the state of the primary
button associated with the device (iieActive is TRUE when the primary button is pressed and FALSE when it is
released). If a 3D pointing device is in usgctive events will typically reflect whether the pointing device is
within (or in contact with) the TouchSensor node's geometry.

The eventOut fieldouchTime is generated when all three of the following conditions are true:
a. The pointing device was pointing towards the geometry when it was indiztilvated(isActive is TRUE).
b. The pointing device is currently pointing towards the geon{etBver is TRUE).

c. The pointing device is deactivatadActive FALSE event is also generated).

125



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

More information about this behaviour is described.i.7.3, Pointing-device sensp#s6.7.4, Drag sensqrand
4.6.7.5, Activating and manipulating sensors

\.IF!.I'I'II_HTL_@—
®6.52 Transform
Transform {
eventln MFNode addcChi I dren
eventln MFNode renmoveChi | dren
exposedFi el d SFVec3f center 00O # (- 00, )
exposedFi el d MFNode children []
exposedFi el d SFRotation rotation 0010 #1[-1,1], (-0, ™)
exposedFi el d SFVec3f scal e 111 # (0, o)
exposedFi el d SFRotation scaleGientation 0 0 1 0 # [-1,1], (-, o)
exposedFi el d SFVec3f transl ati on 00O # (- 00, )
field SFVec3f bboxCent er 000 # (-0, )
field SFVec 3f bboxSi ze -1 -1-1# (0,0 or -1,-1,-1

}

The Transform node is a grouping node that defines a coordinate system for its children that is relative to the
coordinate systems of its ancestors. &&e4, Transformation hierarchgnd4.4.5, Standard units and coordinate
system for a description of coordinate systems and transformations.

4.6.5, Grouping and children nodgsovides a description of thohildren, addChildren, andremoveChildren fields
and eventins.

The bboxCenter andbboxSze fields specify a bounding box that encloses the children of the Transform node. This

is a hint that may be used for optimization purposes. The results are undefined if the specified bounding box is
smaller than the actual bounding box of the children at any time. A dbfextize value, (-1, -1, -1), implies that

the bounding box is not specified and, if needed, shall be calculated by the browser. The bounding box shall be large
enough at all times to enclose the union of the group's children's bounding boxes; it shall not include any
transformations performed by the group itself (i.e., the bounding box is defined in the local coordinate system of the
children). The results are undefined if the specified bounding box is smaller than the true bounding box of the group.
A description of théboxCenter andbboxSze fields is provided ii.6.4, Bounding boxes

Thetrandation, rotation, scale, scaleOrientation andcenter fields define a geometric 3D transformation consisting
of (in order):

a. a (possibly) non-uniform scale about an arbitrary point;
b. arotation about an arbitrary point and axis;
c. atranslation.

The center field specifies a translation offset from the origin of the local coordinate system (0,0,)otat@n
field specifies a rotation of the coordinate system. 3dae field specifies a non-uniform scale of the coordinate
system.scale values shall be greater than zero. BradeQOrientation specifies a rotation of the coordinate system
before the scale (to specify scales in arbitrary orientations)scBle©rientation applies only to the scale operation.
Thetrandation field specifies a translation to the coordinate system.

Given a 3-dimensional poift and Transform nodé& is transformed into poir®’ in its parent's coordinate system

by a series of intermediate transformations. In matrix transformation notation, whermeEnt@),( SR
(scaleOrientation), T (trandation), R (rotation), and S $cal€) are the equivalent transformation matrices,

126



Copyright © The VRML Consortium Incorporated

ISO/IEC 14772-1:1997(E)

P =TxCxRxSRxSx-SRx-CxP

The following Transform node:

Transform {
center
rotation
scal e
scaleOientation
transl ati on
chil dren

00

R

——H40n0n

}
is equivalent to the nested sequence of:

Transform {
translation T
children Transform {
translation C
children Transform {
rotation R
children Transform {
rotati on SR
children Transform {
scale S
children Transform {
rotation -SR
children Transform {
translation -C
children [...]

1338888

®6.53 Viewpoint

Vi ewpoi nt {
eventln SFBool set _bind
exposedFi el d SFFl oat fieldOView
exposedFi el d SFBool junp

exposedFi el d SFRotation orientation

exposedFi el d SFVec3f position
field SFString description
event Qut SFTi ne bi ndTi e
event Qut SFBool i sBound

}

\.IF!.I'I'II_HTL_@—

0.785398 # (0, )
TRUE

0010 #[-1,1, (-, )
0010 # (-0, )

The Viewpoint node defines a specific location in the local coordinate system from which the user may view th
scene. Viewpoint nodes are bindable children nodes4(&#0, Bindable children nodeand thus there exists a
Viewpoint node stack in the browser in which the top-most Viewpoint node on the stack is the currently activ
Viewpoint node. If a TRUE value is sent to tee bind eventin of a Viewpoint node, it is moved to the top of the
Viewpoint node stack and activated. When a Viewpoint node is at the top of the stack, the user's view |
conceptually re-parented as a child of the Viewpoint node. All subsequent changes to the Viewpoint node
coordinate system change the user's view (e.g., changes to any ancestor transformation nodes or to the Viewp
node'sposition or orientation fields). Sending aet_bind FALSE event removes the Viewpoint node from the stack

127



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

and produces$sBound FALSE andbindTime events. If the popped Viewpoint node is at the top of the viewpoint
stack, the user's view is re-parented to the next entry in the stack. More details on binding stacks can be found in
4.6.10, Bindable children node#/hen a Viewpoint node is moved to the top of the stack, the existing top of stack
Viewpoint node sends asBound FALSE event and is pushed down the stack.

An author can automatically move the user's view through the world by binding the user to a Viewpoint node and

then animating either the Viewpoint node or the transformations above it. Browsers shall allow the user view to be

navigated relative to the coordinate system defined by the Viewpoint node (and the transformations above it) even if
the Viewpoint node or its ancestors' transformations are being animated.

ThebindTime eventOut sends the time at which the Viewpoint node is bound or unbound. This can happen:
a. during loading;
b. when aset_bind event is sent to the Viewpoint node;
c. when the browser binds to the Viewpoint node through its user interface described below.

The position andorientation fields of the Viewpoint node specify relative locations in the local coordinate system.
Position is relative to the coordinate system's origin (0,0,0), whilentation specifies a rotation relative to the
default orientation. In the default position and orientation, the viewer is on the Z-axis looking down the -Z-axis
toward the origin with +X to the right and +Y straight up. Viewpoint nodes are affected by the transformation
hierarchy.

Navigation types (se€.29, NavigationIinfpthat require a definition of a down vector (e.g., terrain following) shall

use the negative Y-axis of the coordinate system of the currently bound Viewpoint node. Likewise, navigation types
that require a definition of an up vector shall use the positive Y-axis of the coordinate system of the currently bound
Viewpoint node. Theorientation field of the Viewpoint node does not affect the definition of the down or up
vectors. This allows the author to separate the viewing direction from the gravity direction.

Thejump field specifies whether the user's view "jumps" to the position and orientation of a bound Viewpoint node
or remains unchanged. This jump is instantaneous and discontinuous in that no collisions are performed and no
ProximitySensor nodes are checked in between the starting and ending jump points. If the user's position before the
jump is inside a ProximitySensor tlegitTime of that sensor shall send the same timestamp as the bind eventin.
Similarly, if the user's position after the jump is inside a ProximitySensanteelime of that sensor shall send the

same timestamp as the bind eventin. Regardless of the valjpgmpfat bind time, the relative viewing
transformation between the user's view and the current Viewpoint node shall be stored with the current Viewpoint
node for later use wham-jumping (i.e., popping the Viewpoint node binding stack from a Viewpoint node with

jump TRUE). The following summarizes the bind stack rules &&e10, Bindable children nodewith additional

rules regarding Viewpoint nodes (displayed in boldface type):

d. During read, the first encountered Viewpoint node is bound by pushing it to the top of the Viewpoint node
stack. If a Viewpoint node name is specified in the URL that is being read, this named Viewpoint node is
considered to be the first encountered Viewpoint node. Nodes contained wditnnodes, within the
strings passed to the Browser.createVrmlFromString() method, or within files passed to the
Browser.createVrmIFromURL() method (s€€.2.10, Browser script interfgcare not candidates for the
first encountered Viewpoint node. The first node within a prototype instance is a valid candidate for the
first encountered Viewpoint node. The first encountered Viewpoint node sersBoand TRUE event.

e. When aset_bind TRUE event is received by a Viewpoint node,

1. Ifitis not on the top of the stacKhe relative transformation from the current top of stack
Viewpoint node to the user’sview is stored with the current top of stack Viewpoint node. The
current top of stack node sendsisBound FALSE event. The new node is moved to the top of the
stack and becomes the currently bound Viewpoint node. The new Viewpoint node (top of stack)
sends amsBound TRUE event.If jumpis TRUE for the new Viewpoint node, the user’sview is

128



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)
instantaneoudy " jumped" to match the values in the position and orientation fields of the
new Viewpoint node.

2. Ifthe node is already at the top of the stack, this event has no affect.

f.  When aset_bind FALSE event is received by a Viewpoint node in the stack, it is removed from the stack.
If it was on the top of the stack,

1. it sends amsBound FALSE event,

2. the next node in the stack becomes the currently bound Viewpoint(iad@op)and issues an
isBound TRUE event,

3. ifitsjump field value is TRUE, the user’s view is instantaneoudy " jumped" to the postion
and orientation of the next Viewpoint node in the stack with the stored rdative
transformation of thisnext Viewpoint node applied.

g. If aset_bind FALSE event is received by a node not in the stack, the event is ignoresBeurat events
are not sent.

h. When a node replaces another node at the top of the stat$Bdbied TRUE and FALSE events from the
two nodes are sent simultaneously (i.e., with identical timestamps).

i. Ifabound node is deleted, it behaves as if it receisatl bind FALSE event (see c.).
The jump field may change after a Viewpoint node is bound. The rules described above still appty ifas
TRUE when the Viewpoint node is bound, but changed to FALSE befosettivend FALSE is sent, the Viewpoint
node does notin-jump during unbind. Ifjump was FALSE when the Viewpoint node is bound, but changed to
TRUE before theet_bind FALSE is sent, the Viewpoint node does performutiigump during unbind.
Note that there are two other mechanisms that result in the binding of a new Viewpoint:

j- An Anchor node'sirl field specifies a "#ViewpointName".

k. A scriptinvokes thé oadURL() method and the URL argument specifies a "#ViewpointName".
Both of these mechanisms override jhep field value of the specified Viewpoint node (#ViewpointName) and

assume thgump is TRUE when binding to the new Viewpoint. The behaviour of the viewer transition to the newly
bound Viewpoint depends on the currently bound Navigationinfo ngge'§eld value (se®.29, Navigationinfh

ThefiddOfView field specifies a preferred minimum viewing angle from this viewpoint in radians. A small field of
view roughly corresponds to a telephoto lens; a large field of view roughly corresponds to a wide-angle lens. Tt
field of view shall be greater than zero and smaller thiaifthe value offieldOfView represents the minimum
viewing angle in any direction axis perpendicular to the view. For example, a browser with a rectangular viewin
projection shall have the following relationship:

di splay width t an( FOVhori zontal/ 2)

di spl ay hei ght tan( FOVyertical/ 2)

where the smaller of display width or display height determines which angle equigdiitb®/iew (the larger angle
is computed using the relationship described above). The larger angle shall notreandethay force the smaller
angle to be less thdiddOfView in order to sustain the aspect ratio.

The description field specifies a textual description of the Viewpoint node. This may be used by browser-specific
user interfaces. If a Viewpointtdescription field is empty it is recommended that the browser not present this
Viewpoint in its browser-specific user interface.

129



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The URL syntax "../scene.w | #Vi ewpoi nt Nanme" specifies the user's initial view when loading
"scene.wrl" to be the first Viewpoint node in the VRML file that appears as
DEF Vi ewpoi nt Name Vi ewpoint {...}. This overrides the first Viewpoint node in the VRML file as the
initial user view, and a&et_bind TRUE message is sent to the Viewpoint node named "ViewpointName". If the
Viewpoint node named "ViewpointName" is not found, the browser shall use the first Viewpoint node in the VRML
file (i.e. the normal default behaviour). The URL synta®/i"ewpoi nt Nane" (i.e. no file name) specifies a
viewpoint within the existing VRML file. If this URL is loaded (e.g. Anchor nodelsfield or | oadURL()

method is invoked by a Script node), the Viewpoint node named "ViewpointName" is bogetdb{ad TRUE

event is sent to this Viewpoint node).

The results are undefined if a Viewpoint node is bound and is the child of an LOD, Switch, or any node or prototype
that disables its children. If a Viewpoint node is bound that results in collision with geometry, the browser shall
perform its self-defined navigation adjustments as if the user navigated to this pothB(geellisior).

a7 )
meL.-”{ﬁ/—

®6.54 VishbilitySensor
VisibilitySensor {

exposedFi el d SFVec3f center 00O # (- o0, )

exposedFi el d SFBool enabled TRUE

exposedFi el d SFVec3f size 00O # [0, o)

event CQut SFTinme enterTine

event CQut SFTime exitTine

event CQut SFBool isActive

}

The VisibilitySensor node detects visibility changes of a rectangular box as the user navigates the world.
VisibilitySensor is typically used to detect when the user can see a specific object or region in the scene in order to
activate or deactivate some behaviour or animation. The purpose is often to attract the attention of the user or to
improve performance.

The enabled field enables and disables the VisibilitySensor nodendbled is set to FALSE, the VisibilitySensor

node does not send eventserifbled is TRUE, the VisibilitySensor node detects changes to the visibility status of
the box specified and sends events through dhetive eventOut. A TRUE event is output isActive when any

portion of the box impacts the rendered view. A FALSE event is sent when the box has no effect on the view.
Browsers shall guarantee thatighctive is FALSE, the box has absolutely no effect on the rendered view. Browsers
may err liberally whemsActive is TRUE. For example, the box may affect the rendering.

The exposed fieldsenter andsize specify the object space location of the box centre and the extents of the box
(i.e., width, height, and depth). The VisibilitySensor node's box is affected by hierarchical transformations of its
parents. The components of tee field shall be greater than or equal to zero.

TheenterTime event is generated whenever ikctive TRUE event is generated, aedtTime events are generated
wheneverisActive FALSE events are generated. A VisibilitySensor read from a VRML file shall gengketise
TRUE andenter Time events if the sensor is enabled and the visibility box is visible. A VisibilitySensor inserted into
the transformation hierarchy shall generiafetive TRUE andenterTime events if the sensor is enabled and the
visibility box is visible. A VisibilitySensor removed from the transformation hierarchy shall gericfateve
FALSE andexitTime events if the sensor is enabled and the visibility box is visible.

Each VisibilitySensor node behaves independently of all other VisibilitySensor nodes. Every enabled
VisibilitySensor node that is affected by the user's movenesgives and sends events, possibly resulting in
multiple VisibilitySensor nodes receiving and sending events simultaneously. Unlike TouchSensor nodes, there is no
notion of a VisibilitySensor node lower in the scene graph "grabbing" events. Multiply instanced VisibilitySensor

130



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

nodes (i.e., DEF/USE) use the union of all the boxes defined by their instances. An instanced VisibilitySensor no
shall detect visibility changes for all instances of the box and send events appropriately.

\.IF!.I'I'II_HTL_@—
®6.55 Worldlnfo

Worl dinfo {
field MFString info []
field SFString title ""

}

The Worldinfo node contains information about the world. This node is strictly for documentation purposes and he
no effect on the visual appearance or behaviour of the worldtiflééeld is intended to store the name or title of

the world so that browsers can present this to the user (perhaps in the window border). Any other information abc
the world can be stored in th#o field, such as author information, copyright, and usage instructions.

\.IF!.I'I'II_HTL_@—

131



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

/7 Conformance and minimum support
requirements

\.IF!.I'I'II_HTL_@—

@7.1 Introduction

7.1.1 Table of contents

7.1Introduction
7.1.1Table of contents
7.1.20bjectives
7.1.3Scope
7.2 Conformance
7.2.1Conformance of VRML files
7.2.2Conformance of VRML generators
7.2.3Conformance of VRML browsers
7.3Minimum support requirements
7.3.1IMinimum support requirements for generators
7.3.2Minimum support requirements for browsers
7.3.3VRML requirements for conforming to the base profile
7.3.4Sound priority, attenuation, and spatialization

7.1.2 Objectives

This clause addresses conformance of VRML files, VRML generators and VRML browsers.

The primary objectives of the specifications in this clause are:
a. to promote interoperability by eliminating arbitrary subsets of, or extensions to, ISO/IEC 14772;
b. to promote uniformity in the development of conformance tests;
c. to promote consistent results across VRML browsers;

d. to facilitate automated test generation.

7.1.3 Scope

Conformance is defined for VRML files and for VRML browsers. For VRML generators, conformance guidelines
are presented for enhancing the likelihood of successful interoperability.

A concept ofbase profile conformance is defined to ensure interoperability of VRML generators and VRML
browsers. Base profile conformance is based on a set of limits and minimal requirements. Base profile conformance
is intended to provide a functional level of reasonable utility for VRML generators while limiting the complexity
and resource requirements of VRML browsers. Base profile conformance may not be adequate for all uses of
VRML.

132



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

This clause addresses the VRML data stream and implementation requirements. Implementation requireme
include the latitude allowed for VRML generators and VRML browsers. This clause does not directly address th
environmental, performance, or resource requirements of the generator or browser.

This clause does not define the application requirements or dictate application functional content within a VRMI
file.

The scope of this clause is limited to rules for the open interchange of VRML content.

a7 . ™)
meL.-”L_ﬁj/—

@7.2 Conformance

7.2.1 Conformance of VRML files
A VRML file is syntactically correct according to ISO/IEC 14772 if the following conditions are met:
a. The VRML file contains as its first element a VRML header comment4se2, Headgr
b. All entities contained therein match the functional specification of the corresponding entities of ISO/IEC
14772-1. The VRML file shall obey the relationships defined in the formal grammar and all other syntactic

requirements.

c. The sequence of entities in the VRML file obeys the relationships specified in ISO/IEC 14772-1 producing
the structure specified in ISO/IEC 14772-1.

d. All field values in the VRML file obey the relationships specified in ISO/IEC 14772-1 producing the
structure specified in ISO/IEC 14772-1.

e. No nodes appear in the VRML file other than those specified in ISO/IEC 14772-1 unless required for the
encoding technique or those defined by the PROTO or EXTERNPROTO entities.

f.  The VRML file is encoded according to the rules of ISO/IEC 14772.

g. It does not contain behaviour described as undefined elsewhere in this specification.
A VRML file conforms to thebase profile if:

h. Itis syntactically correct.

i. |t meets the restrictions dfble 7.1

7.2.2 Conformance of VRML generators

A VRML generator is conforming to this part of ISO/IEC 14772 if all VRML files that are generated are
syntactically correct.

A VRML generator conforms to the base profile if it can be configured such that all VRML files generated conform
to the base profile.

133



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

7.2.3 Conformance of VRML browsers
A VRML browser conforms to the base profile if:
a. lItis able to read any VRML file that conforms to the base profile.

b. It presents the graphical and audio characteristics of the VRML nodes in any VRML file that conforms to
the base profile, within the latitude defined in this clause.

c. It correctly handles user interaction and generation of events as specified in ISO/IEC 14772, within the
latitude defined in this clause.

d. It satisfies the requirements B13.2, Minimum support requirements for browsas enumerated ifiable
7.1

a7
~RmLY 8 —

®7.3Minimum support requirements

7.3.1 Minimum support requirementsfor generators

There is no minimum complexity which is required of (or appropriate for) VRML generators. Any compliant set of
nodes of arbitrary complexity may be generated, as appropriate to represent application content.

7.3.2 Minimum support requirementsfor browsers

This subclause defines the minimum complexity which shall be supported by a VRML browser. Browser
implementations may choose to support greater limits but may not reduce the limits descfifel@ in.1 When

the VRML file contains nodes which exceed the limits implemented by the browser, the results are undefined.
Where latitude is specified ifiable 7.1for a particular node, full support is required for other aspects of that node.

7.3.3VRML requirementsfor conforming to the base profile

In the following table, the first column defines the item for which conformance is being defined. In some cases,
general limits are defined but are later overridden in specific cases by more restrictive limits. The second column
defines the requirements for a VRML file conforming to the base profile; if a VRML file contains any items that
exceed these limits, it may not be possible for a VRML browser conforming to the base profile to successfully parse
that VRML file. The third column defines the minimum complexity for a VRML scene that a VRML browser
conforming to the base profile shall be able to present to the user. The word "ignore" in the minimum browser
support column refers only to the display of the item; in particattr,events to ignored exposedFields must still
generate correspondinghanged events.

134



Copyright © The VRML Consortium Incorporated

ISO/IEC 14772-1:1997(E)

Table 7.1 -- Specificationsfor VRML browser s conforming to the base profile

Iltem

VRML FileLimit

Minimum Browser Support

All groups

500 children.

500 children. IgndokoxCenter andbboxSze.

All interpolators

1000 key-value pairs

1000 key-value pairs.

All lights

8 simultaneous lights.

8 simultaneous lights.

Names for DEF/PROTO/fiel

. —

50 utf8 octets.

50 utf8 octets.

10 URLs. URN's ignored.

All url fields 10 URLs. Support “http', “file', and “ftp' protocols.
Support relative URLs where relevant.

PROTO/ 30 fields, 30 eventins, _ _

EXTERNPROTO 30 eventQuts, 30 30 fields, 30 eventins, 30 eventOuts, 30 exposedFigl

exposedFields.

EXTERNPROTO n/a URL references VRML files conforming to the base
profile

PROTO definition nesting 5 levels. 5 levels.

depth

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFFloat No restrictions. Full support.

SFImage 256 width. 256 heigh 256 width. 256 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec?2f 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

ds.

135



ISO/IEC 14772-1:1997(E)

Copyright © The VRML Consortium Incorporated

MFColor 15,000 values. 15,000 values.
MFFloat 1,000 values. 1,000 values.
MFInt32 20,000 values. 20,000 values.
MFNode 500 values. 500 values.
MFRotation 1,000 values. 1,000 values.
: 30,000 utf8 octets per . .
MFString string, 10 strings. 30,000 utf8 octets per string, 10 strings.
MFTime 1,000 values. 1,000 values.
MFVec2f 15,000 values. 15,000 values.
MFVec3f 15,000 values. 15,000 values.
Anchor No restrictions. Ignorparameter. Ignoredescription.
Appearance No restrictions. Full support.
30 second
AudioClip uncompressed PCM g&gﬁ&?gg uncompressed PCM WAV. Ignore
WAV. '
Background No restrictions. ;);reliézg_?;,x?&igroundCol Or, panorama images as
Billboard Restrictions as for al Full support except as for all groups.
groups.
Box No restrictions. Full support.
.- Restrictions as for all | |Full support except as for all groups. Any navigation
Collision . 9
groups. behaviour acceptable whenllggion occurs.
Color 15,000 colours. 15,000 colours.
Restrictions as for all .
ColorInterpolator interpolators, Full support except as for all interpolators.
Cone No restrictions. Full support.
Coordinate 15,000 points. 15,000 points.
Coordinatelnterpolator 15,000 coordinates pgqi 15,000 coordinateskggvalue. Support as for all

136




Copyright © The VRML Consortium Incorporated

ISO/IEC 14772-1:1997(E)

keyValue. Restrictions | |interpolators.
as for all interpolators
Cylinder No restrictions. Full support.
CylinderSensor No restrictions. Full support.
DirectionalLight No restrictions. Not scoped by parent Group or Transform.
ElevationGrid 16,000 heights. 16,000 heights.
(#crossSection
Extrusion points)*(#spine points) | |(#crossSection points)*(#spine points) <= 2,500.
<= 2,500.
Fog No restrictions. "EXPONENTIAL" treated as "LINEAR"
If the values of the text aspects characterfagi]y,
style cannot be simultaneously supported, the order|q
FontStyle No restrictions. precedence shall be: 1) character séarily 3) style.
Browser must display all characters in ISO 8859-1
character se2.[18859
Grou Restrictions as for al Full support except as for all groups
p groups. pp p groups.
JPEG and PNG formg
ImageTexture Restrictions as for JPEG and PNG format. Support as for PixelTexture
PixelTexture.
10 vertices per face. . - .
IndexedFaceSet 5000 faces. Less than ilr%\e/)e(rftilgleds per face. 5000 faces. 15,000 indices in g
15,000 indices. '
15,000 total vertices.
IndexedLineSet 15,000 indices in any | {15,000 total vertices. 15,000 indices in any index figd.
index field.
Full support except as for all groups.
Inline No restrictions. url references VRML files conforming to the base
profile
- At least first 4evel/range combinations interpreted, af
LOD Rreosutrlgtlons as for al support as for all groups. Implementations may
groups. disregardevel distances.
Ignore ambient intensity. Ignore specular colour. Igr]
Material No restrictions. emissive colour. One-bit transparency; transparency
values >= 0.5 transparent.

137

—




ISO/IEC 14772-1:1997(E)

Copyright © The VRML Consortium Incorporated

MovieTexture

MPEG1-Systems and
MPEG1-Video formats

MPEG1-Systems and MPEG1-Video formats. Display
one active movie texture. Ignosgpeed field.

Navigationinfo

No restrictions.

Ignomvatar Sze. IgnorevisibilityLimit.

Normal

15,000 normals

15,000 normals

Normalinterpolator

15,000 normals per
keyValue. Restrictions
as for all interpolators

15,000 normals peeyValue. Support as for all
interpolators.

Orientationinterpolator

Restrictions as for all
interpolators.

Full support except as for all interpolators.

PixelTexture

256 width. 256 heigh

Ifully opaque pixels.

256 width. 256 height. Display fully transparent and

PlaneSensor

No restrictions.

Full support.

PointLight

No restrictions.

Ignoreadius. Linear attenuation.

PointSet

5000 points.

5000 points.

Positioninterpolator

Restrictions as for all
interpolators.

Full support except as for all interpolators.

ProximitySensor

No restrictions.

Full support.

ScalarInterpolator

Restrictions as for all
interpolators.

Full support except as for all interpolators.

25 eventlns. 25

25 eventins. 25 eventOuts. 25 fields.

Seript eventOuts. 25 fields. ||No scripting language support required.

Shape No restrictions. Full support.

Sound No restrictions. 2 active squnds. Linear distance attenuation. No
spatialization. See 7.3.4.

Sphere No restrictions. Full support.

SphereSensor No restrictions. Full support.

SpotLight No restriction IgnorbeamWidth. Ignoreradius. Linear attenuation.

Switch Restrictions as for al Full support except as for all groups.

groups.

138



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Text itor%g fgg r;?fr?éss H%100 characters per string. 100 strings.
TextureCoordinate 15,000 coordinates. 15,000 coordinates.
TextureTransform No restrictions. Full support.

TimeSensor No restrictions. Ignorectyclelnterval < 0.01 second.
TouchSensor No restrictions. Full support.

Transform gRﬁ)ngg.tions as for 4 IFuII support except as for all groups.
Viewpoint No restrictions. Ignorel dOfView. Ignoredescription.
VisibilitySensor No restrictions. Always visible.

WorldInfo No restrictions. Ignored.

7.3.4 Sound priority, attenuation, and spatialization

7.3.4.1 Sound priority

If the browser does not have the resources to play all of the currently active sounds, it is recommended that 1
browser sort the active sounds into an ordered list using the following sort keys in the order specified:

a. decreasingriority;
b. for sounds withpriority > 0.5, increasing (nowtartTime);
c. decreasingntensity at viewer locationifitensity &times; intensity attenuation);

wherepriority is thepriority field of the Sound node, now represents the current sragTime is thesartTime
field of the audio source node specified in sherce field, and intensity attenuation refers to the intensity multiplier
derived from the linear decibel attenuation ramp between inner and outer ellipsoids.

It is important that sort key 2 be used for the high priority (event and cue) sounds so that new cues will be hea
even when the browser is "full" of currently active high priority sounds. Sort key 2 should not be used for norme
priority sounds, so selection among them will be based on sort key 3 (intensity at the location of the viewer).

The browser shall play as many sounds from the beginning of this sorted list as it can given available resources :
allowable latency between rendering. On most systems, the resources available for MIDI streams are different fr
those for playing sampled sounds, thus it may be beneficial to maintain a separate list to handle MIDI data.

7.3.4.2 Sound attenuation and spatialization

In order to create a linear decrease in loudness as the viewer moves from the inner to the outer ellipsoid of 1
sound, the attenuation must be based on a linear decibel ramp. To make the falloff consistent across browsers,
decibel ramp is to vary from 0 dB at the minimum ellipsoid to -20 dB at the outer ellipsoid. Sound nodes with al
outer ellipsoid that is ten times larger than the minimum will display the inverse square intensity dropoff tha
approximates sound attenuation in an anechoic environment.

139



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Browsers may support spatial localization of sounds wipatalize field is TRUE as well as their underlying

sound libraries will allow. Browsers shall at least support stereo panning of non-MIDI sounds based on the angle
between the viewer and the source. This angle is obtained by projecting thel@atind (in global space) onto

the XZ plane of the viewer. Determine the angle between the Z-axis and the vector from the viewer to the
transformedocation, and assign a pan value in the range [0.0, 1.0] as depickeguire 7.1 Given this pan value,

left and right channel levels can be obtained using the following equations:

| ef t PanFactor = 1 - pan?

right PanFactor = 1 - (1 - pan)?

pan = 0.5
Sound location
Wienwing
Direction 4
&zimuth

angle

pan = 0.0 pan =1.0

pan = 0.5

Figure 7.1: Stereo Panning

Using this technique, the loudness of the sound is modified yténsity field value, then distance attenuation to
obtain the unspatialized audio output. The values in the unspatialized audio output are then scaled by leftPanFactor
and rightPanFactor to determine the final left and right output signals. The use of more sophisticated localization

techniques is encouraged, but not required ESEENDB]).

\.IF!.I'I'II_HTL_@—

140



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Annex A

(normative)

Grammar definition

a7
~RmLY 8 —

@A .1 Tableof contents and introduction

A.1.1 Table of contents

This annex provides a detailed description of the grammar for each syntactic element in this part of ISO/IEC 1477
The following table of contents lists the topics in this clause:

A.1 Table of contents and introduction
A.1.1 Table of contents
A.1.2 Introduction

A.2 General

A.3 Nodes

A.4 Fields

A.1.2 Introduction

Itis not possible to parse VRML files using a context-free grammar. Semantic knowledge of the names and types
fields, eventins, and eventOuts for each node type (either built-in or user-defined RR®FO or
EXTERNPROTO) shall be used during parsing so that the parser knows which field type is being parsed.

The '# (0x23) character begins a comment wherever it appears outside of the first line of the VRML file or quote
SFString or MFString fields. The '#' character and all characters until the next line terminator comprise the comme
and are treated as whitespace.

The carriage return (0x0d), linefeed (0Ox0a), space (0x20), tab (0x09), and comma (0x2c) characters are whitesp
characters wherever they appear outside of quoted SFString or MFString fields. Any number of whitespac
characters and comments may be used to separate the syntactic entities of a VRML file. All reserved keywords
displayed in boldface type.

Any characters (including linefeed and '#) may appear within the quotes of SFString and MFString fields. A doubl
quote character within a string shall be preceded with a backslash (e.g, "Each double quotes characte
shall have a backslash."). A backslash character within a string shall be preceded with a backslash forming t
backslashes (e.g., "One backslash \\ character").

Clause6, Nodes referenceontains a description of the allowed fields, eventins and eventOuts for all pre-defined
node types. Thdouble, float, andint32 symbols are expressed using Perl regular expression syntdx;[BE&RL

for details. ThedFirstChar, IdRestChars, andstring symbols have not been formally specified; Claug€ields and
events referen¢e&ontains a more complete description of their syntax.

The following conventions are used in the semi-formal grammar specified in this clause:

141



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

a. Keywords and terminal symbols which appear literally in the VRML file, are specifieddh
b. Nonterminal symbols used in the grammar are specifigdlin.

c. Production rules begin with a nonterminal symbol and the sequence of characters "::=", and end with a
semi-colon (";").

d. Alternation for production rules is specified using the vertical-bar symbol ("|").
Table A.1contains the complete list of lexical elements for the grammar in this part of ISO/IEC 14772.

TableA.1-- VRML lexical elements

Terminal Other

Keywords symbols symbols
DEF period 0| Id
EXTERNPROTO open brace {J| double
FALSE close brace }j| fiddType
IS open bracket [)| float
NULL close brackef]) int32
PROTO string
ROUTE
TO
TRUE
USE
eventin
eventOut
exposedField
field

Terminal symbols and the string symbol may be separated by one or more whitespace characters. Keywords and the
Id, fieldType, float, int32, anddouble symbols shall be separated by one or more whitespace characters.

\.IF!.I'I'II_HTL_@—
@A.2 General

vrmliScene ;=
statements;;

Statements ::=
staterment |
statement statements |
empty ;

statement ::=
nodeStatement |
protoStatement |
routeSatement ;

nodeSatement ::=
node |
DEF nodeNameld node |
USE nodeNameld ;

142



Copyright © The VRML Consortium Incorporated

rootNodeStatement ::=
node | DEF nodeNameld node ;

protoStatement ::=
proto |
externproto ;

protoSatements::=
protoStatement |
protoStatement protoStatements |
empty ;

proto ::=
PROT O nodeTypeld [ interfaceDeclarations ] { protoBody } ;

protoBody ::=
protoStatements rootNodeStatement statements;

interfaceDeclarations ::=
interfaceDeclaration |
interfaceDeclaration interfaceDeclarations |
empty ;

restrictedinterfaceDeclaration ::=
eventln fieldType eventinid |
eventOut fieldType eventOutid |
field fieldType fieldid fieldvalue ;

interfaceDeclaration ::=
restrictedinterfaceDeclaration |
exposedField fieldType fieldld fieldValue ;

externproto ::=

EXTERNPROTO nodeTypeld [ externinterfaceDeclarations] URLLigt ;

externinterfaceDeclarations ::=
externinterfaceDeclaration |
externlnterfaceDecl aration externinterfaceDeclarations |

empty ;

externinterfaceDeclaration ::=
eventln fieldType eventinid |
eventOut fieldType eventOutid |
field fieldTypefieldid |
exposedField fieldTypefieldid ;

routeSatement ::=

ROUTE nodeNameld . eventOutld TO nodeNameld . eventinid ;

URLList ::=
mfstringValue ;

errpt.y:::

ISO/IEC 14772-1:1997(E)

143



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—

@A .3 Nodes

node::=
nodeTypeld { nodeBody } |
Script { scriptBody } ;

nodeBody ::=
nodeBodyElement |
nodeBodyElement nodeBody |
empty ;
scriptBody 1=
scriptBodyElement |
scriptBodyElement scriptBody |
empty ;
scriptBodyElement ::=
nodeBodyElement |
restrictedinterfaceDeclaration |
eventln fieldType eventinld | S eventinid |
eventOut fieldType eventOutld | S eventOutld |
field fieldTypefieldid | Sfieldld ;

nodeBodyElement ::=
fieldid fieldValue |
fiddld I1Sfieldld |
eventinld I Seventinid |
eventOutld | S eventOutld |
routeSatement |
protoStatement ;

nodeNameld ::=
Id;

nodeTypeld ::=
Id;

fiddld::=
Id;

eventlnld ::=
Id;

eventOutld ::=
Id;

Id::=
IdFirstChar |
IdFirstChar IdRestChars;

IdFirstChar ::=
Any 1ISO-10646 character encoded using UTF-8 except: 0x30-0x39, 0x0-0x20, 0x22, 0x23, 0x27, 0x2b, Ox2c,
0x2d, Ox2e, 0x5b, 0x5c, 0x5d, 0x7b, Ox7d, OX7f ;

IdRestChars ::=
Any number of ISO-10646 characters except: 0x0-0x20, 0x22, 0x23, 0x27, Ox2c, 0x2e, 0x5b, 0x5¢, 0x5d, 0x7b,
0x7d, OX7f ;

144



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

\.IF!.I'I'II_HTL_@—

@A 4 Fidds

fiddType::=
MFCoalor |
MFFloat |
MFInt32 |
MFNode |
M FRotation |
MFString |
MFTime |
MFVec2f |
MFVec3f |
SFBoadl |
SFCoalor |
SFFloat |
SFImage |
SFInt32 |
SFNode |
SFRotation |
SFString |
SFTime |
SFVec2f |
SFVec3f ;

fieldvalue ::=
sfbool Value |
sfcolorValue |
sffloatValue |
sfimageValue |
sfint32Value |
sfnodeValue |
sfrotationValue |
sfstringValue |
sftimeValue |
sfvec2fValue |
sfvec3fValue |
mfcolorValue |
mffloatVal ue |
mfint32Value |
mfnodeValue |
mfrotationValue |
mfstringValue |
mftimeValue |
mfvec2fValue |
mfvec3fValue ;

sfboolValue ::=
TRUE |
FALSE ;

sfcolorValue ::=
float float float ;

sffloatValue ::=
float ;

145



ISO/IEC 14772-1:1997(E)

float ::=
([+/-12((([0-9]+(\.)?)|([0-9]*\.[0-9]+))([eE][+\-]?[0-9]+) ?)).
sfimageValue ::=
int32int32 int32 ...
sfint32Value ::=
int32;
int32::=
([+\-1?2(([0-9]4)|(0[xX][0-9a-fA-F]+)))
sfnodeValue ::=

nodeStatement |
NULL ;

sfrotationValue ::=
float float float float ;

sfstringValue ::=
string ;

string ::=

Copyright © The VRML Consortium Incorporated

"*" ... double-quotes must be \", backslashes must be \\...

sftimeValue ::=
double;

double ::=
((+/-12((([0-9]+(\.)?)|([0-9]*\.[0-9]+)) ([eE][+\-] ?[0-9]+) ?))

mftimeValue ::=
sftimeValue |

[1]
[ sftimeValues] ;

sftimeValues ::=
sftimeValue |
sftimeValue sftimeValues;;

sfvec2fValue ::=
float float ;

sfvec3fValue ::=
float float float ;

mfcolorValue::=
sfcolorValue |

[1]
[ sfcolorValues] ;

sfcolorValues =

sfcolorValug|

sfcolorValue sfcolorValues
mffloatValue::=

sffloatValue|

[11
[ sfloatValueq ;

146



Copyright © The VRML Consortium Incorporated

sffloatValues ::=
sffloatValue |
sffl oatVal ue sffloatValues ;

mfint32Value ::=
sfint32Value |

[1]
[ fint32Values] ;

sfint32Values ::=
sfint32Value |
sfint32Value sfint32Values;

mfnodeValue ::=
nodeStatement |

11

[ nodeSatements] ;

nodeSatements ::=
nodeStatement |
nodeSatement nodeStatements;;

mfrotationValue ::=
sfrotationValue |

[1]
[ sfrotationValues] ;

sfrotationValues ::=
sfrotationValue |
sfrotationValue SfrotationValues ;

mfstringValue ::=

sfstringValue |

[1]

[ sfstringValues] ;
sfstringValues ::=

sfstringValue |

sfstringValue sfstringValues;

mfvec2fValue ::=
sfvec2fValue |

[1]
[ sfvec2fValues) ;

sfvec2fValues ::=
sfvec2fValue |
sfvec2fValue sfvec2fValues ;

mfvec3fValue ::=
sfvec3fValue |

[1]
[ sfvec3fValues] ;

sfvec3fValues:=
sfvec3fValug

sfvec3fValuesfvec3fValues

\.IF!.I'I'II_HTL_@—

ISO/IEC 14772-1:1997(E)

147



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Annex B

(normative)

Java platform scripting reference

~RmLY 8 —
@B.1 Introduction

This annex describes the Java platform classes and methods that enable Script n6d43, (Seep) to interact

with VRML scenes. Sed.12, Scripting for a general description of scripting languages in ISO/IEC 14772. Note
that support for the Java platform is not required by ISO/IEC 14772, but any access of the Java platform from within
VRML Script nodes shall conform with the requirements specified in this annex.

B.1 Introduction

B.2 Platform

B.3 Supported protocol in the Script node'sfield
B.3.1url field
B.3.2 File extension

B.3.3 MIME type
B.4 Eventin handling

B.4.1 Description
B.4.2 Parameter passing with event objects
B.4.3 processEvents() and processEvent() methods
B.4.3.1 processEvents() method
B.4.3.2 processEvent() method
B.4.4 eventsProcessed() method
B.4.5 shutdown() method
B.4.6 initialize() method
B.5 Accessing fields and events
B.5.1 Accessing fields, eventins and eventOuts of the script
B.5.2 Accessing fields, eventins and eventOuts of other nodes
B.5.3 Sending eventOuts or eventins
B.6 Exposed classes and methods for nodes and fields
B.6.1 Introduction
B.6.2 Field class and ConstField class
B.6.3 Array handling
B.6.3.1 Format
B.6.3.2 Constructors and methods
B.6.4 Node class
B.6.5 Browser class
B.6.6 User-defined classes and packages
B.6.7 Standard Java platform packages
B.7 Exceptions

B.8 Examples
B.9 Class definitions

B.9.1 Class hierarchy

148



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

B.9.2 VRML packages
B.9.2.1 vrml package
B.9.2.2 vrml.field package
B.9.2.3 vrml.node package
B.10 Example of exception class

\.IF!.I'I'II_HTL_@—

@®B.2 Platform

The Javam platform is an object-oriented, hardware and operating system independent, multi-threaded, genera
purpose application environment developedSoy Microsystems, IncThe Java platform consists of the language,
the virtual machine, and a set of core class libraries. A conforming Java platform implements all three componer
according to their specifications. S2¢JAVA] for a description of the language, the virtual machine, and the three
core classes java.lang, java.util, and java.io. The other core class libraries, which are not used in this annex,
described irE.[JAPI].

~RmLY 8 —
®B.3 Supported protocol in the script node’s url field

B.3.1 url field

Theurl field of the Script node may contdifRL references to Java bytecode as illustrated below:

Script {
url "http://foo.co.jp/Exanple.cl ass"
event |l n SFBool start

}
B.3.2 Fileextension

The file extension for Java bytecode ©d ass.

B.3.3MIME type

The MIME type for Java bytecode is defined as follows:

application/x-java

149



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—

@B .4 Eventln handling

B.4.1 Description

Events to the Script node are passed to the corresponding Java platform preiessEventsQr processEvent))
in the script. The script is specified in i field of the Script node.

For a Java bytecode file specified in thkfield, the following three conditions hold:
a. it shall contain the class definition whose name is exactly the same as the body of the file name

b. it shall be a subclass of the Script class B8e2.3, vrml.node packape

c. it shall be declared as a "public" class

For example, the following Script node has one eventin whose natag.is

Script {
url "http://foo.co.jp/Exanpl el. cl ass”
event |l n SFBool start

}

This node points to the script file Examplel.class. Its source (Examplel.java) looks like this:

import vrm.*;
inmport vrm .field.*;
i mport vrm . node. *;

public class Exanpl el extends Script {

// . This nethod is called when any event is received
public void processEvent (Event e){

/1 ... performsone operation ...
}

}

In the above example, when thiart eventin is sent the processEvent() method receives the eventln and is executed.

B.4.2 Parameter passing with Event objects

When a Script node receives an eventln, a processEvent() or processEvents() method in the file specified in the url
field of the Script node is called, which receives the eventin as a Java platform object (Event object, see
B.4.3, processEvents() and processEvent() methods

The Event object has three fields of information associated with it: name, value, and timestamp, whose values are
passed by the eventin. These can be retrieved using the corresponding method on the Event object.

public class Event inplenments C oneable {
public String getName();
public ConstField getVal ue();
public doubl e getTi meStanp();
/1 other methods ...

}

Suppose that the eventln type is SFXXX and eventln name is eventinYYY, then

150



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

a. getName() shall return the string "eventinYYY "
b. getValue() shall return ConstField containing the value of the eventin

c. getTimeStamp() shall return a double (in seconds) containing the timestamp when the eventin occurre
(seed.11, Timé

In the example below, the eventin nametast and the eventin value is cast to ConstSFBool. Also, the timestamp
for the time when the eventin occurred is available as a double. These are passed as an Event object to
processEvent() method:

public void processEvent (Event e){
i f(e.getNane().equal s("start")){
Const SFBool v = (Const SFBool ) e. get Val ue();
i f(v.getValue()==true){
/1 ... performsone operation with e.getTimeStanp()...
}

}

B.4.3 processEvents() and processEvent() methods

B.4.3.1 processEvents() method

Authors can define a processEvents() method within a class that is called when theesgiips rsome set of
events. The prototype of the processEvents() method pigblic void processEvents(int
count, Event events[]);

count indicates the number of events deliveregnts is the array of events delivered. Its default behaviour is to
iterate over each event, calling processEvent() on each one as follows:

public void processEvents(int count, Event events[])

{
for (int i =0; i < count; i++){
processEvent (events[i]);
}

}

Although authors might change this operation by giving a user-defined processEvents() method, in most cases, tl
only change the processEvent() method and the eventsProcessed() method as described below.

When multiple eventins are routed from a single node to a single Script node and eventins which have the sa
timestamp areaceived, processEvents() receives multiple events as an event array. Otherwise, each incoming eve
invokes separate processEvents().

For example, the processEvents() method receives two events in the following case, when the TouchSensol
activated:

Transform {
children [
DEF TS TouchSensor {}
Shape { geonetry Cone {} }

]

}

DEF SC Script {
url "Exanpl e.cl ass”
eventl n SFBool isActive
eventl n SFTi nme touchTi nme

151



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

}
ROUTE TS.isActive TO SC.isActive
ROUTE TS. touchTi me TO SC. touchTi ne

B.4.3.2 processEvent() method

Authors can define a processEvent() method within a class. The prototype of the processEvent() is
public void processEvent (Event event);

Its default behaviour is no operation.

B.4.4 eventsProcessed() method

Authors may define an eventsProcessed() method within a class that is called after some set of events has been
received. This allows Script nodes that do not rely on the ordering of events received to generate fewer events than
an equivalent Script node that generates events whenever events are receBdd3deerocessEvents() method

The prototype of the eventsProcessed() methpdli$i ¢ voi d event sProcessed();

Its default behaviour is no operation.

B.4.5 shutdown() method

Authors may define a shutdown() method within the Script class that is called when the corresponding Script node is
deleted or the world containing the Script node is unloaded or replaced by another world
(see4.12.3, Initialize() and shutdown)()

The prototype of the shutdown() methoghigol i ¢ voi d shut down();

Its default behaviour is no operation.

B.4.6 initialize() method

Authors may define an initialize() method within the Script class that is called before the browser presents the world
to the user and before any events are processed by any nodes in the same VRML file as the Script nhode containing
this script (se€.12.3, Initialize() and shutdown()The various methods of the Script class such as getEventin(),
getEventOut(), getExposedField(), and getField() are not guaranteed to return correct values before the initialize()
method has been executed. The initialize() method is called once during the life of the Script object.

The prototype of the initialize() methodgsbl i ¢ void initialize();

Its default behaviour is no operation. Seeample2.javain B.5.1 for an example of a user-specified initialize()
method.

152



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

a7
~RmLY 8 —

®B.5 Accessing fields and events

B.5.1 Accessing fields, eventl ns and eventOuts of the script

The fields, eventins, and eventOuts of a Script node are accessible from its corresponding Script class. Each fi
defined in the Script node is available to the Script class by using its name. Its value can be read-from or writte
into. This value is persistent across function calls. EventOuts defined in the Script node can be read. Eventl
defined in the Script node can be written to.

Accessing the fields of the Script node can be done by using the following three types of Script class methods:

a. Field getField(String fiel dNane)
is the method to get the reference to the Script node's field whose regiuiNeme. The return value can
be converted to the appropriate subclass of the Field clas8.6s2gField class and ConstField class

b. Field getEventQut(String event Qut Nane)
is the method to get the reference to the Script node's eventOut whose saem©igName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField class

c. Field getEventln(String eventlnNane)
is the method to get the reference to the Script node's eventin whose eaentnblame. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField clagsventin is a write-only field. When the getValue() method is
invoked on a Field object obtained by the getEventin() method, the return value is unspecified.

When the setValue(), setlValue(), addValue(), insertValue(), delete() or clear() methods are invoked on a Fie
object obtained by thgetField() method, the new value is stored in the corresponding VRML node's field (see also
B.6.2, Field class and ConstField classid B.6.3, Array handliny In the case of the setlValue(), addValue(),
insertValue() or delete() methods, all elements of the VRML node's field are retrieved, then the value specified as
argument is set, added, inserted, deleted (as appropriate) to/from the elements, and then stored as the elements
corresponding VRML node's field. In the case of the clear() method, all elements of a VRML node's field ar
cleared (sethe definition of the clear() methpd

When the setValue(), setlValue(), addValue(), insertValue(), delete() or clear() methods are invoked on a Fie
object obtained by thgetEventOut() method, the call generates an eventOut in the VRML scene (see also
B.6.2, Field class and ConstField clasadB.6.3, Array handlinlj The effect of this eventOut is specified by the
associated Route(s) in the VRML scene. In the case of the setlValue(), addValue(), insertValue() or delete
methods, all elements of the VRML node's eventOut are retrieved, then the value specified as an argument is
added, inserted or deleted (as appropriate) to/from the elements, then stored as the elements in the correspon
VRML node's eventOut, and then the eventOut is sent. In the case of the clear() method, all elements of VRM
node's eventOut are cleared and an eventOut with zero elements is st dedimition of the clear() methpd

When the setValue() or clear() methods are invoked on a Field object obtainedyeyEtreati n() method, the call
generates an eventin to the Script node. When the set1Value(), addValue(), insertValue() or delete() methods
invoked on a Field object obtained by the getEventin() method, the exception (InvalidFieldChangeException) i
thrown.

For example, the following Script node (Example2) defines an evaathy a fieldstate, and an eventOuwn. The
method initialize() is invoked before any events are received, and the method processEvent() is invokiadt when
receives an event:

Script {

153



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

url "Exanpl e2. cl ass”
eventln SFBool start
field SFBool state TRUE
event Qut SFBool on

}

Example2.java:

/1 Exanple2 toggles a persistent field variable "state" in the VRM
/1 Script node each time an eventln "start" is received, then sets
/1 eventQut "on" equal to the value of "state"

inport vrm .*;

import vrm.field.*;

i mport vrnl.node. *;

public class Exanple2 extends Script {
private SFBool state; // field
private SFBool on; /'l event Qut

public void initialize(){
state = (SFBool) getField("state");
on = (SFBool) getEventCQut("on");

}

public void processEvent (Event e){
i f(state.getValue()==true){
on.setValue(false); // set false to eventQut 'on’
state. set Val ue(fal se);

}

el se {
on.setValue(true); // set true to eventQut 'on’
state. setVal ue(true);

}

B.5.2 Accessing fields, eventlns and eventOuts of other nodes

If a script program has an access to a node, any eventin, eventOut or exposedField of that node is accessible by
using the getEventin(), getEventOut() or getExposedField() method defined in the node's clBsS.4sééode
clasg.

The typical way for a Script node to have an access to another VRML node is to have an SFNode field which
provides a reference to the other node. The following Example3 shows how this is done:

DEF SomeNode Transform {}

Script {
field SFNode node USE SoneNode # SoneNode is a Transform node
eventl n SFVec3f pos # new value to be inserted in

# SoneNode’ s translation field
url "Exanpl e3. cl ass”

}
Example3.java:

import vrm.*;
inport vrm .field.*;
i mport vrmnl.node. *;

public class Exanple3 extends Script {
private SFNode node; /1 field
private SFVec3f trans; // translation field captured fromrenote
/'l Transform node

public void initialize(){
node = (SFNode) getFiel d("node");

154



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

}

public void processEvent (Event e){
Il get the reference to the "translation’ field of the Transform node
trans = (SFVec3f) ((Node) node. get Val ue()). get ExposedFi el d("transl ation");
/'l reset translation to value given in Event e, which is eventln pos
// in the VRML Script node.
trans. set Val ue( ( Const SFVec3f)e. get Val ue());

}

B.5.3 Sending eventOuts or eventlns

Assume that the thread which executes processEvent() (or processEvents()) is called 'main’ thread and any o
thread spawned by the Script, except for the 'main’ thread, is called 'sub’ thread. Sending eventOuts/eventins in
'main’ thread follows the model described4iti0.3, Execution modeand sending eventOuts/eventins in any 'sub’
thread follows the model describeddiri2.6, Asynchronous scripts

In the 'main’ thread: Calling one of the setValue(), setlValue, addValue(), insertValue(), clear() or delete()
methods on an eventOut/eventin sends that event at that time. Calling the methods multiple times during o
execution of the thread still only sends one event which corresponds to the first call of the method. All other cal
are ignored. The event is assigned the same timestamp as the initial event which caused the main thread to exect

In the’sub’ thread: Calling one of the setValue(), setlValue, addValue(), insertValue(), clear() or delete() method
on an eventOut/eventin sends that event at that time. Calling the methods multiple times during one execution of t
thread sends one event per call of the method. The browser assigns the timestamp to the event.

Note: sending eventins is ordinarily performed by the VRML scene, not by Java platform scripts. Exceptions ar
possible as specified B.5.1, Accessing fields, eventins and eventOuts of the script

a7 . ™)
meL.-”L_ﬁj/—

®B.6 Exposed classes and methods for nodes and fields

B.6.1 Introduction
Java platform classes for VRML are defined in the packages; vrml.node andvrml.field.

The Field class extends the Java platfo@igct clasdy default; thus, Field has the full functionality of the Object
class, including thgetClass()method. The rest of the package defines a "Const" read-only class for each VRML
field type with a getValue() method for each class; and another read/write class for each VRML field type, with
both getValue() and setValue() methods for each class. A getValue() method converts a VRML type value into
Java platform type value. A setValue() method converts a Java platform type value into a VRML type value and se
it to the VRML field.

Some methods are listed abrbws exceptiofi meaning that errors are possible. It may be necessary to write
exception handlers (using the Java platfoigatsh() method) when those methods are used. Any method not listed

as "throws exception" is guaranteed to generate no exceptions. Each method that throws an exception include
prototype showing which exception(s) can be thrown.

B.6.2 Field class and ConstField class

All VRML data types have equivalent Java platform classes. The Field class is the root of all field types.
public abstract class Field inplenents C oneable {

155



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

/'l et hods

This class has two types of subclasses: read-only classes and read/write classes

a. Read-only classes

These classes support the getValue() method. Some classes support additional convenience methods to get
value(s) from the object.

ConstSFBoglConstSFColarConstMFColoy ConstSFFlogtConstMFFloatConstSFImage
ConstSFInt32ConstMFInt32 ConstSFNodeConstMFNodeConstSFRotationConstMFRotation
ConstSFStringConstMFEStringConstSFVec2fConstMFVec2f ConstSFVec3fConstMFVec3f
ConstSFTimeConstMFTime

Read/write classes

These classes support both getValue() and setValue() methods. If the class name is prefi&d with
(meaning that it is a multiple valued field class), the class also supports the setlValue(), addValue() and
insertValue() methods. Some classes support additional convenience methods to get and set value(s) from
the object.

SFBool SFColor MFColor, SFFloaf MFFloat SFImage SFInt32 MFInt32, SFNode MFNode
SFRotation MFRotation SFString MFString SFVec2f MFVec2f SFVec3f MFVec3f SFTime MFTime

The VRML Field class and its subclasses have several methods to get and set value(s): getSize(), getValue(),
getlValue(), setValue(), setlValue(), addValue(), insertValue(), clear(), delete() and toString(). In these methods,
getSize(), getlValue(), setlValue(), addValue(), insertValue(), clear() and delete() are only available for multiple
value field classes (MF classes).

C.

156

get Si ze()
is the method to return the number of elements of each multiple value field class (MF class).

get Val ue()
is the method to convert a VRML type value into a Java platform type value and return it.

get 1Val ue(int index)

is the method to convert a single VRML type valuneléx-th element of an array) and return it as a single
Java platform type value. The index of the first element is 0. Attempting to get an element beyond the
length of the element array throws an exception (ArraylndexOutOfBoundsException).

set Val ue(val ue)
is the method to convert a Java platform tyalele into a VRML type value and copy it to the target object.

set 1Val ue(i nt index, val ue)

is the method to convert from a Java platform tygdee to a VRML type value and copy it to thrdex-th
element of the target object. The index of the first element is 0. Attempting to set an element beyond the
length of the element array throws an exception (ArraylndexOutOfBoundsException).

addVal ue(val ue)
is the method to convert from a Java platform tyglee to a VRML type value and append it to the target
object, thus adding an element.

i nsertVal ue(int index, value)

is the method to convert from a Java platform tygdee to a VRML type value and insert it as a new
element at thendex-th position, thus adding an element. The index of the first element is 0. Attempting to
insert the element beyond the length of the element array throws an exception
(ArraylndexOutOfBoundsException).



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

clear()
is the method to clear all elements in the target object so that it has no more elements in it.

del et e(int index)

is the method to delete thradex-th element from the target object, thus decreasing the length of the
element array by one. The index of the first element is 0. Attempting to delete the element beyond the
length of the element array throws an exception (ArraylndexOutOfBoundsException).

toString()
is the method to return a String containing the VRML utf8 encoded value (or values) of the equivalent of
the field. In the case of the SFNode(ConstSFNode) and MFNode (ConstMFNode),

*  SFNode(ConstSFNode): the method returns the VRML utf8 string that, if parsed as the value of
an SFNode field, would produce this node. If the browser is unable to reproduce this node, the
name of the node followed by the open brace and close brace shall be returned. Additions
information may be included as one or more VRML comment strings.

*  MFNode(ConstM FNode): the method returns the VRML utf8 string that, if parsed as the value of
a MFNode field, would produce this array of nodes. If the browser is unable to reproduce this
node, the name of the nodes followed by the open brace and close brace shall be returne
Additional information may be included as one or more VRML comment strings

See als®.5.1, Accessing fields, eventins and eventOuts of the J8ri3, Array handlingB.6.4, Node classand
B.9.2.1, vrml packagdor each class' methods definition.

B.6.3 Array handling

B.6.3.1 Format

Some constructors and other methods of the field classes take an array as an argument.

a.

A single-dimensional array

Some constructors and other methods of the following classes take a single-dimensional array as -
argument. The array is treated as follows:

1. ConstSFColor, ConstMFCoalor, SFColor and M FColor
float colors|[]

colors[] consists of a set of three float-values (representing red, green and blue).

2. ConstSFRotation, ConstM FRotation, SFRotation and M FRotation
float rotations[]

rotations[] consists of a set of four float-values (representing axisX, axisY, axisZ and angle).
3. ConstSFVec2f, ConstMFVec2f, SFVec2f and M FVec2f

float vec2s[]

vec2s[] consists of a set of two float-values (representing x and y).

4. ConstSFVec3f, ConstM FVec3f, SFVec3f and M FVec3f
float vec3s[]

157



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

vec3s[] consists of a set of three float-values (representing x, y and z).

5. ConstSFlmage and SFImage
byte pixel s[]

pixels[] consists of 2-dimensional pixel image. The ordering of the individual components for an
individual pixel within the array of bytes will be as follows:

# Conp. byte[i] byte[i + 1] byte[i + 2] byte[i + 3]

1 intensityl intensity2 intensity3 intensity4
2 intensityl al phal intensity2 al pha2

3 redl greenl bl uel red2

4 redl greenl bl uel al phal

The order of pixels in the array are to follow that defined.th SFImagebyte O is pixel O,
starting from the bottom left corner.

b. A singleinteger and a single-dimensional array

Some constructors and other methods take a single integer value ézd)eahd a single-dimensional
array as arguments: for example, MFFloat(int size, float values[])siz&dparameter specifies the number
of valid elements in the array, from 0-th elementsize(- 1)-th element, all other values are ignored. This
means that the method may be passed an array of leizgtior larger. The sameule for a single-
dimensional arrajs applied to the valid elements.

c. Anarray of arrays

Some constructors and other methods alternatively take an array of arrays as an argument. The array is
treated as follows:

1. ConstMFColor and MFColor
float colors[][]
colors[][] consists of an array of sets of three float-values (representing red, green and blue).

2. ConstMFRotation and M FRotation
float rotations[][]
rotations[][] consists of an array of sets of four float-values (representing axisX, axisY, axisZ and
angle).
3. ConstMFVec2f and M FVec2f
float vec2s[][]
vec2s[][] consists of an array of sets of two float-values (representing x and y).

4. ConstMFVec3f and M FVec3f
float vec3s[][]
vec3s[][] consists of an array of sets of three float-values (representing x, y and z).

B.6.3.2 Constructor s and methods

The following describes how arrays are interpreted in detail for each constructor and method.

158



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

SupposeNA represents the number of elements in the array specified as an argument of some constructors and of
methods, andNT represents the number of elements which the target object requires or has. For example, if tF
target object is SFColor, it requires exactly 3 float values.

In the following description, suppose SF* represents subclasses of Field class, ConstSF* represents subclasse
ConstField class, MF* represents subclasses of MField class and ConstMF* represents subclasses of ConstMF

class.

a. A single-dimensional array

In the following description, if the target object is:

ConstSFColor and SFColadT is exactly 3
ConstMFColor and MFColoNT is a multiple of 3, anllA is rounded down to a multiple of 3
ConstSFRotation and SFRotatitNT is exactly 4

ConstMFRotation and MFRotatioNT is a multiple of 4, antllA is rounded down to a multiple of
4

ConstSFVec2f and SFVecHNT is exactly 2

ConstMFVec2f and MFVec2i\T is a multiple of 2, antllA is rounded down to a multiple of 2
ConstSFVec3f and SFVecHT is exactly 3

ConstMFVec3f and MFVec3N\T is a multiple of 3, antllA is rounded down to a multiple of 3
ConstSFImage and SFImad¥ is exactlywidth* height* components (width, height and number

of components in the image, se&.5, SFimage

For ConstSF* objects and SF* objects

For all constructors and methods which take a single-dimensional array as an argument, the
following rules are appliedA shall be larger than or equalNd. If NA is larger tharNT, the

elements from the 0-th to thET - 1)-th element are used and remaining elements are ignored.
Otherwise, an exception(ArraylndexOutOfBoundsException) is thrown.

For example, when the array is used as an argument of the setValue() for SFColor, the array she
contain at least 3 float values. If the array contains more than 3 float values, the first 3 values ar
used.

For ConstMF* aobjectsand MF* objects

For constructor.

The sameule for ConstSF* and SF* objedtsapplied.

For example, when the array is used as an argument of the constructor for MFColor, the
array shall contain at least 3 float values. If the array contains 3N, 3N +1 or 3N + 2 float
values, the first 3N values are used.

159



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

160

For setValue() method.

If NT is smaller than or equal dA, NT is increased tdlA and then all elements of the
array are copied into the target objeciNTfis larger tharNA, NT is decreased tdA and
then all elements of the array are copied into the target object.

e For getValue() method.

If NT is smaller than or equal dA, all elements of the target object are copied into the
first NT elemets of the array. NT is larger tharNA, an exception
(ArraylndexOutOfBoundsException) is thrown.

e For setlValue() method.

The target element (thedex-th element) is treated as an SF* object. So the sal@éor
ConstSF* and SF* objects applied.

e For getlValue() method.

The target element (thedex-th element) is treated as an SF* (or ConstSF*) object. So
the sameule for ConstSF* and SF* objedis applied.

*  For addValue() and insertValue() method.

The corresponding SF* object is created using the argument, and then added to the target
object or inserted into the target object.

A singleinteger and a single-dimensional array

For all constructors and methods which take a single integer value (@afednd a single-dimensional
array as arguments, for example, MFFloat(int size, float values[]), the following rule is applied.

The size parameter specifies the number of valid elements in the array from the 0-th elemensite the (
1)-th element; all other values are ignored. This means that the method may be passed an array of length
size or larger.

The valid elements are copied to a new arraythadules for a single-dimensional ariayg applied to the
new array for all methods.

An array of arrays

This argument is used only for MF* objects and ConstMF* objects. In the following case, sifpise
the number of arrays (for example float f[4][BIA is 4) specified as an argument of some constructors and
other methods anNT is the return value @fetSize()method of each object.

* For constructor.
The object which haA elements is created.

e For setValue() method.
If NT is smaller than or equal dA, NT is increased tdlA and then all elements of the array are
copied into the target object.NIT is larger thaNA, NT is decreased tdA and then all elements
of the array are copied into the target object.

*  For getValue() method.
If NT is smaller than or equal dA, all elements of the target object are copied into the array. If
NT is larger thaNA, an exception(ArraylndexOutOfBoundsException) is thrown.



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

B.6.4 Node class

TheNode class has several methods:

a. String getType()
is the method to return the type of the node.

b. ConstField getEventQut (String event Cut Nane)
is the method to get the reference to the node's eventOut whose meentOstName. The return value
can be converted to the appropriate subclass of the Field clas®,dskerield class and ConstField class

c. Field getEventln(String eventlnNane)
is the method to get the reference to the node's eventin whose rexamtl ifName. The return value can
be converted to the appropriate subclass of the Field clas8.6s2eField class and ConstField class
Eventin is a write-only field. When the getValue() method is invoked on a Field object obtained by the
getEventin() method, the return value is unspecified.

d. Field get ExposedFiel d(String exposedFi el dNane)
is the method to get the reference to the node's exposedField whose equossitie dName. The return
value can be converted to the appropriate subclass of the Field class, (see
B.6.2, Field class and ConstField chass

e. Browser getBrowser()
is the method to get the browser object that this node is contained i §seeBrowser cla3s

f. String toString()
is the same as thieString()method of SFNode (ConstSFNode).

When the setValue(), setlValue(), addValue(), insertValue(), delete() or clear() methods are invoked on a Fie
object obtained by thgetExposedField() method, the call generates an eventOut in the VRML scene (see also
B.6.2, Field class and ConstField clasadB.6.3, Array handlinly The effect of this eventOut is specified by the
associated Route(s) in the VRML scene. In the case of the setlValue(), addValue(), insertValue() or delete
methods, all elements of the VRML node's exposedField are retrieved, then the value specified as an argumen
set, added, inserted or deleted (as appropriate) to/from the elements, then stored as the elements in the correspol
VRML node's exposedField, and then the eventOut is sent. In the case of the clear() method, all elements of VRI
node's exposedField are cleared and an eventOut with zero elements is sémé @efnition of the clear()
method.

When the setValue() or clear() methods are invoked on a Field object obtainedyeytrenti n() method, the call
generates an eventln in the VRML scene. When the setl1Value(), addValue(), insertValue() or delete() methods
invoked on the Field object, an exception (InvalidFieldChangeException) is thrown.

B.6.5 Browser class
This section lists the public Java platform interfaces toBimvser class, which allows scripts to get and set

browser information. For descriptions of the following methods,4s&2.10, Browser script interfac&able B.1
lists the Browser class methods.

161



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

TableB.1 -- Browser class methods

Return value [|Method name

String get Nane()
String get Ver si on()
fl oat get Current Speed()
fl oat get Current FranmeRat e()
String get Vor | dURL()
voi d repl aceWr | d( BaseNode[] nodes)
BaseNode[ ] createVrm FronString(String vrm Synt ax)

. createVrm FromUJRL(String[] url, BaseNode node,
voi d i

String event)
voi d addRout e( BaseNode fromNode, String fronEvent Qut,
BaseNode toNode, String toEventln)
voi d del et eRout e( BaseNode fromNode, String fronEvent Qut,
BaseNode toNode, String toEventln)

voi d | oadURL(String[] url, String[] paraneter)
voi d set Description(String description)

SeeB.9.2.1, viml packagdor each method's definition.

Table B.2contains conversions from the types used in Browser class to Java platform types.

TableB.2 -- VRML and Java platform types

VRML type Java platform type
SFString String
SFFloat float
MFString String[]
MFNode BaseNode[]

162



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

When a relative URL is specified as an argument of the loadURL() and createVrmIFromURL() method, the path is
relative to the script file containing these methods 4s&8, Relative URDs

B.6.6 User-defined classes and packages

The Java platform classes defined by a user can be used in the Java program. They are first searched from
directories specified in the CLASSPATH environment variable and then the directory where the Java program
class file is placed.

If the Java platform class is in a package, this package is searched from the directories specified in tl
CLASSPATH environment variable and then the directory where the Java program's class file is placed.

B.6.7 Standard Java platform packages

Java programs have access to the full set of classes availphlean* . All parts of the Java platform are required

to work as "normal” for the Java platform. So all methods specified in this annex are required to be thread-safe. T
security model is browser specific.

a7 . ™)
meL.-”L_ﬁj/—

@B.7 Exceptions

Java platform methods may throw the following exceptions:

a. InvalidFieldException
is thrown at the time getField() is executed and the field name is invalid.

b. InvalidEventlnException
is thrown at the time getEventin() is executed and the eventin name is invalid.

c. InvalidEventOutException
is thrown at the time getEventOut() is executed and the eventOut name is invalid.

d. InvalidExposedFieldException
is thrown at the time getExposedField() is executed and the exposedField name is invalid.

e. InvalidVRML SyntaxException
is thrown at the time createVrmlFromString(), createVrmIFromURL() or loadURL() is executed and the
vrml syntax is invalid.

f.  InvalidRouteException
is thrown at the time addRoute() or deleteRoute() is executed and one or more of the arguments is invalid.

g. InvalidFieldChangeException
may be thrown as a result of all sorts of illegal field changes, for example:

1. Adding a node from one World as the child of a node in another World.
2. Creating a circularity in a scene graph.

3. Setting an invalid string on enumerated fields, such as the fogType field of the Fog node.

163



ISO/IEC 14772-1:1997(E)

If exceptions are not caught by authors, a browser's behaviour is unspecified (sedexample of exception clgss

4. Calling the setlValue(), addValue() or delete() on a Field object obtained by the getEventin()

method.

ArraylndexOutOfBoundsException

is generated at the time getValue(), set1Value(), insertValue() or delete() is executed and the index is out of
bound (seeB.6.2, Field class and ConstField claskhis is the standard exception defined in the Java

platform Array class.

Illegal ArgumentException

is generated at the time loadURL() or createVrmlIFromURL() is executed and an error is occurred before
retrieving the content of the url (sB6.5, Browser cla3sThis is the standard exception defined by the

Java platform.

Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—

@®B.8 Examples

The following is an example of &cript node which determines whether a given color contains a lot of red. The

Script node exposes a field, an eventin, and an eventOut:
Script {

}

The following is the source code for the Example4.java file that gets called every time an eventin is routed to the

field SFCol or currentColor 0 0 O
eventln SFColor colorln

event Qut SFBool isRed

url " Exanpl e4. cl ass”

above Script node:

Example4.java:

import vrm.*;
import vrm.field.*;
i mport vrnl.node. *;

public class Exanple4 extends Script {

164

/1 Declare field(s)
private SFCol or current Col or;

/1 Decl are event Qut
private SFBool isRed;

/1 buffer for SFCol or.getVal ue().
private float colorBuff[] = new float[3];

public void initialize(){
current Col or = (SFCol or) getField("currentColor");
i sRed = (SFBool) getEventQut("isRed");

}

public void processEvent (Event e){
// This nethod is called when a colorln event is received
current Col or. set Val ue( (Const SFCol or) e. get Val ue());



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

public void eventsProcessed(){
current Col or. get Val ue(col orBuff);
if (colorBuff[0] >= 0.5) // if red is at or above 50%
i sRed. set Val ue(true);
}
}

Details on when the methods defined in Example4.java are called may be fauh@ &) Execution model

Example5: createVrmlFromUrl()

Script {
url "Exanpl eb. cl ass”
field MFString target_url "foo.wl"
event | n MFNode nodesLoaded
event | n SFBool trigger_event

}

Exanpl e5. j ava:

inport vrm .*;
import vrm.field.*;
i mport vrnl.node. *;

public class Exanple5 extends Script {
private MFString target_url; // field
private Browser browser;

public void initialize(){
target _url = (MFString)getField("target_url");
browser = this.getBrowser();

}

public void processEvent (Event e){
if(e.getNane().equal s("trigger_event")){
// do sonething and then fetch val ues
String[] urls;
urls = new String[target _url.getSize()];
target _url.getValue(urls);
browser.createVrm FromURL(urls, this, "nodesLoaded");

}

if(e.getNane().equal s("nodesLoaded")) {
// do sonething

}

Example6: addRoute()

DEF TS TouchSensor {}
Script {
url " Exanpl e6. cl ass”
field SFNode fronNode USE TS
event |l n SFBool clicked
event | n SFBool trigger_event

165



ISO/IEC 14772-1:1997(E)

Example6.java:

inport vrm .*;
i mport

i nport

publ i ¢

vrnmd . field. *;
vrm . node. *;

private SFNode fromNode;
private Browser browser;

public void initialize(){
fromNode = (SFNode) getFiel d("fromNode");
browser = this.getBrowser();

}

cl ass Exanpl e6 extends Script {

public void processEvent (Event e){
if(e.getName().equal s("trigger_event")){
/1 do something and then add routing

browser. addRout e(f r omNode. get Val ue(),

}
if(e.getNane().equal s("clicked")){
/1 do sorething

}

®B.9 Class definitions

B.9.1 Class hierarchy

"isActive",

Copyright © The VRML Consortium Incorporated

this, "clicked");

\.IF!.I'I'II_HT{@—

The classes are divided into three packagast, vrml.field andvrml.node

j ava. |l ang. bj ect

+- vrnl . Event

+- vrn . Browser

+ vrm . Field

[ +- vrm . field. SFBool

[ +- vrnl . field. SFCol or

[ +- vrm . field. SFFl oat

[ +- vrnl.field. SFl rage

[ +- vrnl . field. SFlnt32

| +- vrnl . field. SFNode

[ +- vrm .field. SFRotation

[ +- vrm .field. SFString

| +- vrnl . field. SFTi me

[ +- vrnl . field. SFVec2f

[ +- vrnl . field. SFVec3f

I |

[ +- vrm . Mrield

[ | +- vrnl . field MCol or
[ | +- vrnl.field. MFFI oat
[ | +- vrnl . field MFINt32
[ | +- vrnl.field. MFNode

166



Copyright © The VRML Consortium Incorporated

j ava.

| + vrm
| + vrm
| + vrm
| + vrm
| + vrm
|

.field.
.field.
.field.
.field.
.field.

+- vrnl. Const Fi

+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
vrni
+- vrm
+- vrm
|
+- vrm

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I +-
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+- vrnl. BaseNode

eld

.field.
.field.
.field.
.field.
.field.
.field.
.field.
.field.
.field.
.field.
.field.

M-Rot at i on
MEStri ng

MFTI me
MFVec 2f

M~Vec 3f

Const SFBool

Const SFCol or
Const SFFIl oat
Const SFI mage
Const SFI nt 32

Const SFNode

Const SFRot at i on

Const SFStri ng

Const SFTi ne

Const SFVec2f
Const SFVec 3f

. Const MFi el d

+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
+- vrm
+- vrm

+- vrnl . node. Node

+- vrm . node. Scri pt

| ang. Excepti on

+- java.lang. Runti meException

.field. Const M~Col or
.field. Const MFFI oat
.field. Const MFI nt 32
.field. Const M-Node
.field. Const MmRot ati on

.field. Const MFString
.field. Const MFTi ne
.field. Const M~Vec2f
.field. Const M~Vec3f

[ +- java.lang. ||l egal Argunment Excepti on

[ +- vrm .l nvalidEvent| nExcepti on

[ +- vrm .l nvalidEvent Qut Excepti on

[ +- vrm .l nval i dExposedFi el dExcepti on
[ +- vrm . 1 nvalidFi el dChangeExcepti on
[ +- vrm .1 nvalidFi el dException

[ +- vrm . 1 nval i dRout eExcepti on

I

+- vrm .l nval i dVRMLSynt axExcepti on

ISO/IEC 14772-1:1997(E)

167



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

B.9.2 VRML packages

B.9.2.1 vrml package

package vrni;

public class Event inplenments C oneable

{
public String getName();
public doubl e getTi meStanp();
public ConstField getVal ue();
public Object clone();
public String toString(); /1 This overrides a method in bject
}
public class Browser
{
private Browser();
public String toString(); /1 This overrides a method in bject
/'l Browser interface
public String getName();
public String getVersion();
public float getCurrent Speed();
public float getCurrentFranmeRate();
public String getWrl dURL();
public void repl aceWr! d(BaseNode[] nodes);
publi c BaseNode[] createVrm FronString(String vrm Synt ax)
throws | nval i dVRMLSynt axExcepti on;
public void createvrm FromJRL(String[] url, BaseNode node, String event)
throws | nval i dVRMLSynt axExcepti on;
public voi d addRout e( BaseNode fronNode, String fronEvent Qut,
BaseNode toNode, String toEventln);
public void del et eRout e(BaseNode fronNode, String fronEvent Qut,
BaseNode toNode, String toEventln);
public void |l oadURL(String[] url, String[] paraneter)
throws | nvali dVRMLSynt axExcepti on;
public void setDescription(String description);
}
public abstract class Field inplenents C oneabl e
{
public Object clone();
}

168



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

public abstract class Mrield extends Field

{
public abstract int getSize();
public abstract void clear();
public abstract void delete(int index);
}
public abstract class ConstField extends Field
{
}
public abstract class Const Mield extends ConstField
{
public abstract int getSize();
}
I
/1 This is the general BaseNode cl ass
I
public abstract class BaseNode
{
/1l Returns the type of the node. |If the node is a prototype
/1 it returns the name of the prototype.
public String getType();
/1l Get the Browser that this node is contained in
public Browser getBrowser();
}

B.9.2.2 vrml.field package

package vrm .field;

public class SFBool extends Field

{
publ i c SFBool ();
publ i ¢ SFBool (bool ean val ue);
publ i c bool ean get Val ue();
public void setVal ue(bool ean b);
public void set Val ue( Const SFBool b);
public void setVal ue( SFBool b);
public String toString(); /1 This overrides a method in bject
}
public class SFCol or extends Field
{

public SFCol or();
public SFCol or(float red, float green, float blue);

public void getValue(float colors[]);

public float getRed();
public float getGeen();

169



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

fl oat getBlue();

voi d setVal ue(float colors[]);

voi d setValue(float red, float green, float blue);
voi d set Val ue( Const SFCol or col or);

voi d set Val ue( SFCol or col or);

String toString(); // This overrides a method in Qbject

public class SFFl oat extends Field

SFFl oat () ;
SFFl oat (fl oat f);

fl oat getVal ue();

voi d setVal ue(float f);

voi d set Val ue( Const SFFl oat f);
voi d set Val ue( SFFl oat f);

String toString(); // This overrides a method in Qbject

public class SFlmage extends Field

SFI mage() ;
SFl mage(int width, int height, int conponents, byte pixels[]);

int getWdth();

int getHeight();

i nt get Conponents();

voi d get Pi xel s(byte pixels[]);

voi d setValue(int width, int height, int conmponents,
byte pixels[]);

voi d set Val ue( Const SFl nage i mage) ;

voi d set Val ue( SFl mage i mage) ;

String toString(); // This overrides a method in Qbject

public class SFInt32 extends Field

public
public
public
public
public
public

}

{
public
public
public
public
public
public
public

}

{ _
public
public
public
public
public
public
public
public
public
public

}

{ _
public
public
public
public
public
public
public

}

170

SFI nt 32();
SFI nt 32(i nt val ue);

i nt getVal ue();

void setValue(int i);

voi d set Val ue(Const SFInt32 i);
voi d setVal ue(SFInt32 i);

String toString(); // This overrides a method in Qbject



Copyright © The VRML Consortium Incorporated

public class SFNode extends Field

ISO/IEC 14772-1:1997(E)

{

public SFNode();

publ i ¢ SFNode(BaseNode node);

publ i c BaseNode get Val ue();

public void setVal ue(BaseNode node);

public void set Val ue( Const SFNode node) ;

public void set Val ue( SFNode node);

public String toString(); /1 This overrides a method in bject
}
public class SFRotation extends Field
{

public SFRotation();

public SFRotation(float axisX, float axisY, float axisZ, float angle);

public void getValue(float rotations[]);

public void setValue(float rotations[]);

public void setVal ue(float axisX, float axisY, float axisZz,

fl oat angle);

public void setVal ue(Const SFRotati on rotation);

public void setVal ue(SFRotation rotation);

public String toString(); /1 This overrides a method in bject
}
public class SFString extends Field
{

public SFString();

public SFString(String s);

public String getVal ue();

public void setValue(String s);

public void setVal ue(ConstSFString s);

public void setVal ue(SFString s);

public String toString(); /1 This overrides a method in bject
}
public class SFTine extends Field
{

public SFTinme();

public SFTi me(double tine);

public doubl e getVal ue();

public void setVal ue(double tine);

public void setVal ue(Const SFTine tine);

public void setVal ue(SFTine tine);

public String toString(); /1 This overrides a method in bject
}

171



ISO/IEC 14772-1:1997(E)

public class SFVec2f extends Field

{

}

publ i
publ i

publ i
publ i
publ i

publ i
publ i
publ i
publ i

publ i

C
C

C
C
C

C
C
C
c

c

SFVec2f () ;

SFVec2f (fl oat x,

float y);

voi d get Val ue(fl oat vec2s[]);
float getX();
float getY();

voi d
voi d
voi d
voi d

set Val ue(f | oat
set Val ue(f | oat

vec2s[]);
x, float y);

set Val ue( Const SFVec2f vec);
set Val ue( SFVec2f vec);

String toString();

Copyright © The VRML Consortium Incorporated

/1 This overrides a nethod in bject

public class SFVec3f extends Field

{

}

publ i
publ i

publ i
publ i
publ i
publ i

publ i
publ i
publ i
publ i

publ i

C
C

OO0 00

OO0 00

SFVec3f ();

SFVec3f (fl oat x,

float vy, float

voi d get Val ue(fl oat vec3s[]);
float getX();
float getY();
float getZ();

voi d
voi d
voi d
voi d

set Val ue(f | oat
set Val ue(f I oat

vec3s[]);
x, float vy,

set Val ue( Const SFVec3f vec);
set Val ue( SFVec3f vec);

String toString();

z);

float z);

/1 This overrides a nethod in bject

public class M-Col or extends Mield

{

172

publ i
publ i
publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i
publ i

C
C
c
C

C
C
C

M~Col or () ;
MFCol or (float colors[][]);
MrFCol or (fl oat colors[]);

MFCol or (i nt size,

voi d
voi d

voi d
voi d

voi d
voi d
voi d

get Val ue(f I oat
get Val ue(f I oat

get 1Val ue(i nt
get 1Val ue(i nt

set Val ue(f I oat
set Val ue(f | oat

set Val ue(int size,

colors[][]);
colors[]);

i ndex, fl oat

float colors[]);

colors[]);

i ndex, SFCol or col or);

colors[][]);
colors[]);

float colors[]);

/****************************************************

col or[ 0]
in the way that color[0],
represent the first color. The nunber
is defined as "size / 3".

col or[size -

1] are used

as col or data

color[1], and color[2]

of colors



Copyright © The VRML Consortium Incorporated

***************************************************/

public void setVal ue( M-Col or col ors);
public void set Val ue( Const M-Col or col ors);

public void setlVal ue(int index, ConstSFCol or color);
public void setlVal ue(int index, SFColor color);

ISO/IEC 14772-1:1997(E)

public void setlValue(int index, float red, float green, float blue);

public voi d addVval ue( Const SFCol or col or);
public void addVval ue( SFCol or col or);
public void addVval ue(float red, float green, float blue);

public void insertVal ue(int index, ConstSFCol or color);
public void insertValue(int index, SFColor color);
public void insertValue(int index, float red, float green

fl oat blue);

public String toString(); /1 This overrides a method in bject
}
public class M-Fl oat extends Mield
{
public MFFl oat ();
public MFFl oat (int size, float values[]);
public M-Fl oat (fl oat val ues[]);
public void getVal ue(float values[]);
public float getlValue(int index);
public void setVal ue(float values[]);
public void setVal ue(int size, float values[]);
public void setVal ue( M-Fl oat val ue);
public void setVal ue( Const M-Fl oat val ue);
public void setl1Value(int index, float f);
public void setlVal ue(int index, ConstSFFl oat f);
public void setlVal ue(int index, SFFloat f);
public void addval ue(float f);
public void addVval ue( Const SFFl oat f);
public void addVval ue( SFFl oat f);
public void insertValue(int index, float f);
public void insertVal ue(int index, ConstSFFl oat f);
public void insertVal ue(int index, SFFloat f);
public String toString(); /1 This overrides a method in bject
}
public class M-Int32 extends M-ield
{

public MInt32();
public MFInt32(int size, int values[]);
public MFInt32(int values[]);

public void getVal ue(int values[]);

173



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

public int getlValue(int index);

public void setVal ue(int values[]);

public void setValue(int size, int values[]);
public void setVal ue( MFI nt 32 val ue);

public void setVal ue( Const MFI nt 32 val ue);

public void setlValue(int index, int i);
public void setlValue(int index, ConstSFInt32 i);
public void setlValue(int index, SFInt32 i);

public void addval ue(int i);
public void addVal ue(Const SFInt32 i);
public void addval ue(SFInt32 i);

public void insertValue(int index, int i);
public void insertValue(int index, ConstSFInt32 i);
public void insertValue(int index, SFInt32 i);

public String toString(); /1 This overrides a method in bject
}
public class M-Node extends M- eld
{
public MrNode();
public MFNode(int size, BaseNode node[]);
publ i c MFNode(BaseNode node[]);
public void getVal ue(BaseNode node[]);
publ i c BaseNode get 1Val ue(int index);
public void setVal ue(BaseNode node[]);
public void setVal ue(int size, BaseNode node[]);
public void setVal ue( M-Node node);
public void set Val ue( Const M-Node node) ;
public void setlVal ue(int index, BaseNode node);
public void setlValue(int index, ConstSFNode node);
public void setlVal ue(int index, SFNode node);
public voi d addVal ue(BaseNode node);
public voi d addVal ue( Const SFNode node) ;
public voi d addVval ue( SFNode node);
public void insertVal ue(int index, BaseNode node);
public void insertVal ue(int index, ConstSFNode node);
public void insertVal ue(int index, SFNode node);
public String toString(); /1 This overrides a method in bject
}
public class M-Rotation extends Mield
{

public MFRotation();
public MFRotation(float rotations[][]);

174



Copyright © The VRML Consortium Incorporated

public
public
public
public
public
public
public
public
public
public
public
public
public
public
fl oat angl
public
public
public
public
public
public
public

}

MFRot ation(float rotations[]);
MFRot ation(int size, float rotations[]);

voi d getValue(float rotations[][]);
voi d getVal ue(float rotations[]);

voi d getlVal ue(int index, float rotations[]);
voi d getlVal ue(int index, SFRotation rotation);

voi d setValue(float rotations[][]);

voi d setValue(float rotations[]);

voi d setVal ue(int size, float rotations[]);
voi d set Val ue( M~Rot ati on rotations);

voi d set Val ue( Const MFRot ati on rotations);

voi d set1Val ue(int index, ConstSFRotation rotation);

voi d set1Val ue(int index, SFRotation rotation);

void setlValue(int index, float axisX float axisY, float axisZz,
e);

voi d addVal ue( Const SFRot ati on rotation);
voi d addVal ue( SFRot ati on rotation);
voi d addVal ue(fl oat axisX, float axisY, float axisz, float angle);

void insertVal ue(int index, ConstSFRotation rotation);

void insertVal ue(int index, SFRotation rotation);

void insertValue(int index, float axisX float axisY, float axisZ
fl oat angle);

String toString(); // This overrides a method in Qbject

public class MFString extends Mrield

{

publ i
publ i
publ i

publ i
publ i

publ i
publ i
publ i
publ i

publ i
publ i
publ i

publ i
publ i
publ i

publ i
publ i

C
C
c

MFString();
MFString(int size, String s[]);
MFString(String s[]);

voi d getValue(String s[]);
String get1Val ue(int index);

voi d setValue(String s[]);

voi d setVal ue(int size, String s[]);
voi d setVal ue(MFString s);

voi d set Val ue(Const MFString s);

voi d setlVal ue(int index, String s);
voi d set1Val ue(int index, ConstSFString s);
voi d set1Val ue(int index, SFString s);

voi d addVal ue(String s);

voi d addVal ue(Const SFString s);

voi d addVal ue(SFString s);

void insertValue(int index, String s);

void insertValue(int index, ConstSFString s);

175

ISO/IEC 14772-1:1997(E)



ISO/IEC 14772-1:1997(E)

}

Copyright © The VRML Consortium Incorporated

public void insertValue(int index, SFString s);

public String toString(); /1 This overrides a method in bject

public class M-Tine extends Mield

{

}

publ i
publ i
publ i

publ i
publ i

publ i
publ i
publ i
publ i

publ i
publ i
publ i

publ i
publ i
publ i

publ i
publ i
publ i

publ i

C
C
C

MFTi me() ;
MFTi me(int size, double tines[]);
MFTi me(doubl e tines[]);

voi d

get Val ue(doubl e tines[]);

doubl e get 1Val ue(i nt index);

voi d
voi d
voi d
voi d

voi d
voi d
voi d

voi d
voi d
voi d

voi d
voi d
voi d

set Val ue(doubl e tinmes[]);

set Val ue(int size, double tines[]);
set Val ue( MFTi e tines);

set Val ue( Const MFTi ne ti nes);

set 1Val ue(int index, double tine);
set 1Val ue(int index, ConstSFTine tinme);
set 1Val ue(i nt index, SFTine tine);

addVal ue(doubl e tine);
addVal ue( Const SFTi e time);
addVal ue( SFTinme tine);

i nsertVal ue(int index, double tine);
i nsertVal ue(int index, ConstSFTinme tine);
i nsertVal ue(int index, SFTinme tinme);

String toString(); // This overrides a method in Qbject

public class M-Vec2f extends Mield

{

176

publ i
publ i
publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i
publ i
publ i
publ i

publ i
publ i
publ i

C
C
C
c

MFVec2f () ;

MFVec2f (fl oat vec2s[][]);
MFVec2f (fl oat vec2s[]);

MFVec2f (int size, float vec2s[]);

voi d
voi d

voi d
voi d

voi d
voi d
voi d
voi d
voi d

voi d
voi d
voi d

get Val ue(fl oat vec2s[][]);
get Val ue(fl oat vec2s[]);

get 1Val ue(int index, float vec2s[]);
get 1val ue(i nt index, SFVec2f vec);

set Val ue(fl oat vec2s[][]);

set Val ue(fl oat vec2s[]);

setVal ue(int size, float vec2s[]);
set Val ue( M~Vec2f vecs);

set Val ue( Const MFVec2f vecs);

set 1Val ue(int index, float x, float y);
set 1Val ue(i nt index, ConstSFVec2f vec);
set 1Val ue(i nt index, SFVec2f vec);



Copyright © The VRML Consortium Incorporated

voi d addVal ue(float x, float y);

voi d addVal ue( Const SFVec2f vec);

voi d addVal ue( SFVec2f vec);

void insertValue(int index, float x, float y);

voi d insertVal ue(int index, ConstSFVec2f vec);

void insertVal ue(int index, SFVec2f vec);

String toString(); // This overrides a method in Qbject

public class M-Vec3f extends M-ield

M~Vec3f () ;

M-Vec3f (fl oat vec3s[][]);
M-Vec3f (fl oat vec3s[]);

MFVec3f (int size, float vec3s[]);

voi d
voi d

voi d
voi d

voi d
voi d
voi d
voi d
voi d

voi d
voi d
voi d

voi d
voi d
voi d

get Val ue(fl oat vec3s[][]);
get Val ue(fl oat vec3s[]);

get 1Val ue(int index, float vec3s[]);
get 1Val ue(i nt index, SFVec3f vec);

set Val ue(fl oat vec3s[][]);

set Val ue(fl oat vec3s[]);

set Val ue(int size, float vec3s[]);
set Val ue( M~Vec3f vecs);

set Val ue( Const M~Vec3f vecs);

set1Val ue(int index, float x, float y, float z);
set 1Val ue(i nt index, ConstSFVec3f vec);
set 1Val ue(i nt index, SFVec3f vec);

addVal ue(fl oat x, float y, float z);
addVal ue( Const SFVec3f vec);
addVal ue( SFVec3f vec);

void insertValue(int index, float x, float y, float z);
voi d insertVal ue(int index, ConstSFVec3f vec);

void insertValue(int index, SFVec3f vec);

String toString(); // This overrides a method in Qbject

public class Const SFBool extends ConstField

publ i ¢ Const SFBool (bool ean val ue);

publ i c bool ean get Val ue();

public String toString(); /1 This overrides a method in bject

public
public
public
public
public
public
public

}

{ _
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

}

{

}

177

ISO/IEC 14772-1:1997(E)



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

public class Const SFCol or extends ConstField

{ public Const SFCol or (fl oat red, float green, float blue);
public void getValue(float colors[]);
public fl oat getRed();
public fl oat getGeen();
public float getBlue();
\ public String toString(); /1 This overrides a method in bject
public class Const SFFl oat extends ConstField
{ publ i c Const SFFl oat (fl oat val ue);
public float getValue();
} public String toString(); /1 This overrides a method in bject
public class Const SFl mrage extends ConstField
{ public Const SFl mage(int width, int height, int conmponents, byte pixels[]);
public int getWdth();
public int getHeight();
public int getConmponents();
public void getPixel s(byte pixels[]);
} public String toString(); /1 This overrides a method in Qbject
public class Const SFI nt 32 extends ConstField
{ publ i c Const SFl nt 32(i nt val ue);
public int getValue();
} public String toString(); /1 This overrides a nmethod in bject
public class Const SFNode extends ConstField
{ publ i ¢ Const SFNode( BaseNode node);
publ i c BaseNode get Val ue();
} public String toString(); /1 This overrides a method in bject

public class Const SFRot ati on extends ConstField
public Const SFRot ati on(float axisX, float axisY, float axisZ, float angle);

public void getValue(float rotations[]);

178



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

} public String toString(); /1 This overrides a method in bject
public class ConstSFString extends ConstField
{ public ConstSFString(String val ue);

public String getVal ue();
} public String toString(); /1 This overrides a nmethod in bject
public class Const SFTi me extends ConstField
{ publ i c Const SFTi me(doubl e tine);

public doubl e getVal ue();
} public String toString(); /1 This overrides a method in bject
public class Const SFVec2f extends ConstField
{ public Const SFVec2f (float x, float y);

public void getVal ue(float vec2s[]);

public float getX();

public float getY();
\ public String toString(); /1 This overrides a method in bject
public cl ass Const SFVec3f extends ConstField
{ public Const SFvec3f(float x, float y, float z);

public void getVal ue(float vec3s[]);

public float getX();

public float getY();

public float getZ();
\ public String toString(); /1 This overrides a method in bject
?ublic cl ass Const MFCol or extends Const Mri el d

public Const MFCol or (float colors[][]);
public Const MFCol or (fl oat colors[]);
public Const M~Col or (int size, float colors[]);

public void getValue(float colors[][]);
public void getValue(float colors[]);

public void getlValue(int index, float colors[]);
public void getlVal ue(int index, SFColor color);

public String toString(); /1 This overrides a method in bject

179



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

}
public class Const MFFl oat extends Const MFi el d
{ public Const MFFl oat (i nt size, float values[]);
public Const MFFl oat (fl oat val ues[]);
public void getVal ue(float values[]);
public float get1Val ue(int index);
\ public String toString(); /1 This overrides a method in Qbject
public class Const MFI nt 32 extends Const MFi el d
{ public Const MFI nt 32(int size, int values[]);
public Const MFI nt 32(i nt val ues[]);
public void getVal ue(int values[]);
public int getilValue(int index);
\ public String toString(); /1 This overrides a method in bject
public class Const M-Node extends Const M el d
{ publ i c Const MFNode(i nt size, BaseNode node[]);
publ i ¢ Const MFNode( BaseNode node[]);
public void getVal ue(BaseNode node[]);
publ i c BaseNode get 1Val ue(int index);
} public String toString(); /1 This overrides a method in bject
public class Const M-Rot ati on ext ends Const Mri el d
{ public Const MFRot ation(float rotations[][]);
public Const MFRot ation(fl oat rotations[]);
public Const MFRotation(int size, float rotations[]);
public void getValue(float rotations[][]);
public void getValue(float rotations[]);
public void getlValue(int index, float rotations[]);
public void getlValue(int index, SFRotation rotation);
\ public String toString(); /1 This overrides a method in bject
?ublic cl ass Const MFString extends ConstMield

public Const MFString(int size, String s[]);
public Const MFString(String s[]);

180



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

public void getValue(String values[]);

public String get1Val ue(int index);

public String toString(); /1 This overrides a method in bject
}
public class Const MFTi me extends Const Mri el d
{

public Const MFTi me(int size, double tines[]);

public Const MFTi me(double tines[]);

public void getVal ue(double tinmes[]);

public doubl e get1Val ue(int index);

public String toString(); /1 This overrides a method in bject
}
public class Const MVec2f extends Const MFi el d
{

public Const MFVec2f (fl oat vec2s[][]);

public Const MFVec?2f (fl oat vec2s[]);

public Const M-Vec2f (int size, float vec2s[]);

public void getValue(float vec2s[][]);

public void getVal ue(float vec2s[]);

public void getlValue(int index, float vec2s[]);

public void getlVal ue(int index, SFVec2f vec);

public String toString(); /1 This overrides a method in bject
}
public class Const MVec3f extends Const MFi el d
{

public Const M~Vec3f (fl oat vec3s[][]);

public Const MFVec3f (fl oat vec3s[]);

public Const M-Vec3f (int size, float vec3s[]);

public void getValue(float vec3s[][]);

public void getVal ue(float vec3s[]);

public void getlValue(int index, float vec3s[]);

public void getlVal ue(int index, SFVec3f vec);

public String toString(); /1 This overrides a method in bject
}

181



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

B.9.2.3 vrml.node package

package vrnl . node

/1
/1 This is the general Node cl ass
/11
public abstract class Node extends BaseNode
{
/'l Get an Eventln by nanme. Return value is wite-only.
I Throws an Inval i dEventlnException if eventinNane isn't a valid
11 eventln nane for a node of this type
public final Field getEventin(String eventlnNane);
/'l Get an EventQut by nanme. Return value is read-only.
I Throws an Inval i dEvent Qut Exception if eventQutNanme isn't a valid
I event Qut nane for a node of this type.
public final ConstField getEventQut(String event Qut Nane);
/'l Get an exposed field by nane.
/1 Throws an Invali dExposedFi el dException if exposedFieldName isn't a
valid
I exposedFi el d nane for a node of this type.
public final Field getExposedField(String exposedFi el dNane) ;
public String toString(); /1 This overrides a method in bject
}
/11

/1 This is the general Script class, to be subclassed by all scripts.
/'l Note that the provided nethods allow the script author to explicitly
/'l throw tailored exceptions in case sonething goes wong in the

/'l script.

/11

public abstract class Script extends BaseNode
{

/1 This method is called before any event is generated
public void initialize();

/'l Get a Field by nane.

11 Throws an Inval i dFi el dException if fieldNane isn't a valid
I field name for a node of this type

protected final Field getField(String fiel dNane);

/'l Get an EventQut by nane.

I Throws an Inval i dEvent Qut Exception if eventQutNanme isn't a valid
I event Qut nanme for a node of this type.

protected final Field getEventCQut(String event Cut Nane);

/'l Get an Eventln by nane.

I Throws an Inval i dEventlnException if eventinNane isn't a valid
I eventln nane for a node of this type

protected final Field getEventIn(String eventlnNane);

/'l processEvents() is called automatically when the script receives

182



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

/1 some set of events. It shall not be called directly except by its
I subcl ass.

/1 count indicates the nunber of events delivered.

public void processEvents(int count, Event events[]);

/'l processEvent() is called autonmatically when the script receives
/'l an event.
public void processEvent (Event event);

/'l eventsProcessed() is called after every invocation of processEvents().
public void event sProcessed()

/1 shutdown() is called when this Script node is del eted.
public void shutdown();

public String toString(); /1 This overrides a method in Qbject

\.IF!.I'I'II_HTL_@—
®B.10 Example of exception class

public clasd nvalidEventI nException extends lllegalArgumentException

{
/**
* Constructs an InvalidEvent|nException with no detail mnessage.
*/
public InvalidEventlnException()({
super ();
}

*

* Constructs an InvalidEvent| nException with the specified detai

* message

* A detail nmessage is a String that describes this particular exception.
* @arams the detail nessage

*

public InvalidEventlnException(String s)({

super (s);
}
public class InvalidEvent Qut Exception extends || egal Argunent Excepti on
{
public InvalidEvent Qut Exception(){
super ();
public InvalidEvent Qut Exception(String s)({
super (s);
}

183



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

public class |InvalidExposedFi el dExcepti on extends || egal Argunent Excepti on

{
public Invali dExposedFi el dExcepti on() {

super () ;

public Invali dExposedFi el dException(String s){

super (s);
}
public class InvalidFi el dChangeExcepti on extends Il egal Argunment Excepti on
{
public InvalidFi el dChangeException(){
super ();
}
public InvalidFi el dChangeException(String s){
super (s);
}
public class InvalidFiel dException extends II1egal Argument Exception
{
public InvalidFiel dException(){
super ();
public InvalidFiel dException(String s){
super (s);
}
public class InvalidRouteException extends II1egal Argument Exception
{
public InvalidRouteException(){
super ();
public InvalidRouteException(String s){
super (s);
}
public class InvalidVRM.Synt axException extends Exception
{
public Invali dVRMLSynt axException(){
super ();
}
public Invali dVRMLSynt axException(String s){
super (s);
public String get Message(); // This overrides a nethod in Exception
}

\.IF!.I'I'II_HTL_@—

184



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Annex C

(normative)

ECMAScript scripting reference

wnmu?@—
C.1 Introduction and table of contents

This annex describes the ECMAScript programmimglege that enables Script nodes &d8, Scrip} to interact

with VRML scenes. Sed.12, Scripting for a general description of scripting languages in ISO/IEC 14772. Note
that support for the ECMAScript is not required by ISO/IEC 14772, but eegsa of ECMAScript from within
VRML Script nodes shall conform with the requirements specified in this annex.

C.1 Introduction
C.2 Language
C.3 Supported Protocol in the Script nodelsfield
C.3.1url field
C.3.2 File extension
C.3.3 MIME type
C.4 eventin handling
C.4.1 Receiving eventins
C.4.2 Parameter passing and the eventln function
C.4.3 eventsProcessed( ) function
C.4.4 initialize() function
C.4.5 shutdown( ) function
C.5 Accessing fields and events
C.5.1 Accessing fields and eventOuts of the script
C.5.2 Accessing fields and eventOuts of other nodes
C.5.3 Sending eventOuts
C.6 ECMAScript objects
C.6.1 Notational conventions
C.6.2 VRML field to ECMAScript variable conversion
C.6.3 Browser object
C.6.4 SFColor object
C.6.5 SFImage object
C.6.6 SFNode object
C.6.7 SFRotation object
C.6.8 SFVec2f object
C.6.9 SFVec3f object
C.6.10 MFColor object
C.6.11 MFFloat object
C.6.12 MFInt32 object
C.6.13 MFNode object
C.6.14 MFRotation object
C.6.15 MFString object
C.6.16 MFTime object
C.6.17 MFVec2f object
C.6.18 MFVec3f object

185



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

C.6.19 VrmIMatrix object
C.7 Examples

\.IF!.I'I'II_HTL_@—
®C.2 Language

ECMAScript is a general purpose, crodatform programming language that can be used with ISO/IEC 14772 to
provide scripting of events, objects, and actions. ECMAScript is fully describe@.[ESCR] Prior to
standardization as ECMA-262, ECMAScript was known as Netscape JavaScript. Several syntactic entities in this
annex reflect this origin.

\.IF!.I'I'II_HTL_@—
®C.3 Supported protocol in the Script node'surl field

C.3.1 url field

Theurl field of the Script node may contain URL references to ECMAScript code as illustrated below:
Script { url "http://foo.comnyScript.js" }
Thejavascript: protocoallows the script to be placed inline as follows:

Script { url "javascript: function foo( ) { ... }" }

Browsers supporting the ECMAScript scripting language shall support the javascript: protocol as well as the the
other required protocols (s&e Conformance and minimum support requirenjents

Theurl field may contain multiple URL's referencing either a remote file or in-line code as shown in the following
example:

Script {
url [ "http://foo.com nyScript.js",
"javascript: function foo( ) { ... }" 1]

}

C.3.2 Fileextension

The file extension for ECMASCript source code is '.js', unless a protocol returning mime types is used (such as
HTTP). In that case, any suffix is allowed as long as the proper mime type is returned(3eklime type

C.3.3MIME type

The MIME type for ECMAScript source code is defined as follows:
appl i cati on/ x-j avascri pt

186



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

\.IF!.I'I'II_HTL_@—

®C.4 eventln handling

C.4.1 Receiving eventlns

Events sent to the Script node are passed to the corresponding ECMAScript function in the script. The script
specified in theurl field of the Script node. The function's hame is the same as the eventin and is passed tw
arguments, the event value and its timestamp{s&®, Parameter passing and the eventin furjctibthere is no
corresponding ECMAScript function in the script, the browser's behaviour is undefined.

For example, the following Script node has one eventin field whose natad:is

Script {

eventln SFBool start

url "javascript: function start(value, tinestanmp) { ... }"
}

In the above example, when titart eventin is sent, the start( ) function is executed.

C.4.2 Parameter passing and the eventln function

When a Script node receives an eventin, a corresponding function in the file specifiedrinfitid of the Script

node is called. This function has two arguments. The value of the eventin is passed as the first argument and
timestamp of the eventln is passed as the second argument. The type of the value is the same as the type o
eventln and the type of the timestamp is SFTithé.1, VRML field to ECMAScript variable conversigprovides

a description of how VRML types appear in ECMAScript. The values of the parameters have ity vstbide

the function.

C.4.3 eventsProcessed( ) function

Authors may define an eventsProcessed() function that is called after some set of events lex®iliedn This
allows Script nodes that do not rely on the ordering of evectived to generate fewer events than an equivalent
Script node that generates events whenever events are receivedi(de®eceiving eventlhs

The eventsProcessed( ) function takes no parameters. Events generated from it are given the timestamp of the
event processed.

C.4.4initialize( ) function

Authors may define a function named initialize( ) which is invoked before the browser presents the world to the us
and before any events are processed by any nodes in the same VRML file as the Script node containing this sc
(see4.12.3, Initialize() and shutdown)()

The initialize( ) function has no parameters. Events generated from initialize( ) are given the timestamp of when tl
Script node was loaded.

C.4.5 shutdown( ) function

Authors may define a function named shutdown( ) which is invoked when the corresponding Script node is delet:
or when the world containing the Script node is unloaded or replaced by another world
(see4.12.3, Initialize() and shutdown)()

187



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The shutdown( ) function has no parameters. Events generated from shutdown( ) are given the timestamp of when
the Script node was deleted.

a7
~RmLY 8 —

®C.5 Accessing fields and events

C.5.1 Accessing fields and eventOuts of the Script

The fields and eventOuts of a Script node are accessible from its ECMAScript functions. As in all other nodes, the
fields are accessible only within the Script. The eventins are not accessible. The Script node's eventins can be routed
to and its eventOuts can be routed from. Another Script node with a reference to this node can access its eventins
and eventOuts as for any other node.

A field defined in a Script node is available to the script by using its name. Its value can be read or written. This
value is persistent across function calls. EventOuts defined in the script node can also be read. The value is the last
value assigned.

C.5.2 Accessing fields and eventOuts of other nodes

The script can access any exposedField, eventin or eventOut of any node to which it has access:

DEF SonmeNode Transform{ }
Script {
field SFNode node USE SoneNode
eventl n SFVec3f pos
di rect Qut put TRUE
url "javascript:
function pos(value) ({
node. set _transl ation = val ue;
pr

}

This example sends a set_translation eventln to the Transform node. An eventin on a passed node can appear only
on the left side of the assignment. An eventOut in the passed node can appear only on the right side, which reads the
last value sent out. Fields in the passed node cannot be accessed. However, exposedFields can either send an event
to the set_..." eventln or read the current value of the ¢hanged" eventOut. This follows the routing model of the

rest of ISO/IEC 14772.

Events generated by setting an eventin on a node are sent at the completion of the currently executing function. The
eventln shall be assigned a value of the same datatype; no partial assignments are allowed. For example, it is not
possible to assign the red value of an SFColor eventin. Since eventins are strictly write-only, the remainder of the
partial assignment would have invalid field values. Assigning to the eventin field multiple times during one
execution of the function still only sends one event and that event is the last value assigned.

C.5.3 Sending eventOuts

Assigning to an eventOut of a Script node, or a component of an eventOut (i.e. MF eventOut or a property of an SF

eventOut), sends an event to that eventOut. Events are sent at the end of script execution. An eventOut may be
assigned a value multiple times within the script, but the value sent shall be the last value assigned to the eventOut.
If the value of individual components of an eventOut are changed, the last value given to each component shall be
sent. Components that are not changed in the script, send their initial value determined at the beginning of the script

188



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

execution. For example, the following script segment produces an eventOut value of (4, 3, 1) for the eventO
SFVec3ffoo_changed with an initial value of (6, 6, 6):

a = foo_changed; // copy by reference a(6, 6, 6)

a.x = b5; /1 foo_changed(5, 6, 6)

a.z = 1, /1 foo_changed(5, 6, 1)

b = foo_changed; // copy by reference b(5,6,1)

b.x = 4; /1 foo_changed(4, 6, 1)

c = a /1 copy by reference c(4,6,1)

c.y =3 /1 foo_changed(4, 3,1))

wmmu‘rﬂ_ﬁ}—

@C.6 ECMASCript objects

C.6.1 Notational conventions

Since ECMAScript is an untyped language it has no language constructs to describe the types of parameters pa
to, or values returned from, functions. Therefore this annex uses a notational convention to describe these tyy
Parameters passed are preceded by their type, and the type of any return value precedes the function name. Norr
these types correspond to VRML field types, so those names are used. In the case of no return value, the ident
void is used. In the case of a ECMAScript numeric value or numeric array return, the ideatiBeic or numeric|

] is used. In the case of a string return, the idenffréng is used.

C.6.2VRML field to ECMAScript variable conver sion

ECMAScript native datatypes consist of boolean, numeric and string. The language is not typed, so datatypes
implicit upon assignment. The VRML SFBool is mapped to the ECMASdqulean. In addition to the
ECMAScript true andfalse constants, the VRML TRUE and FALSE values may be used. The VRML SFInt32,
SFFloat and SFTime fields are mapped to the numeric datatypdlbbe maintained in double precision accuracy.
These types are passed by value in function calls. All other VRML fields are mapped to ECMAScript objects
ECMAScript objects are passed by reference.

The ECMAScript boolean, numeric and string are automatically converted to other datatypes when needed. S
2.[ESCR]for more details.

In ECMAScript, assigning a new value to a variable gives the variable the datatype of the new value, in addition
the value. Scalar values (boolean and numeric) are assigned by copying the value. Other objects are assignet
reference.

When assignments are made to eventOuts and fields, the values are converted to the VRML field type. Valu
assigned are always copied. This contrasts with normal assignment in ECMAScript where all assignments except
scalar are performed by reference.

For eventOut objects, assignment copies the value to the eventOut, which will be sent upon completion of t
current function. Assigning an eventOut to an internal variable copies by reference. Subsequent assignments to
internal variable will behave like assignments to the eventOut (i.e., an event will be sent at the end of the functior
Field objects behave identically to eventOut objects, except that no event is sent upon completion of the function.

Assigning an element of an MF object to an internal variable creates a reference to that element. The type shall
the corresponding SF object type. If the MF object is an eventOut and an assignment is made to the internal varial
an event will be sent at the end of the functiéssigning an SF object to an element of an MF object which is a

189



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

field or eventOut (which shall be of the corresponding type) copies the value of the SF object into the MF object
element. If the MF object is an eventOut an event will be sent at the end of the function.

C.6.3 Browser object
This subclause lists the class static functions available iBritveser object which allow scripts to get and set

browser information. Descriptions of the functions are providetiif2.10, Browser script interfac€he syntax for
a callis:

nynf node = Browser.createVrn FronString(’ Sphere {});

Table C.1describes the Browser object's functions, parameters, and return values.

Table C.1-- Browser object functions

Return value Function
String getName( )
String getVersion()

numeric getCurrentSpeed( )

numeric getCurrentFrameRate( )
String getWorldURL ()
void replaceWorld( MFNode nodes )

MFNode createVrmlFromString( String vrmlSyntax )

void createVrmlFromURL ( MFString url, Node node, String event )

addRoute( SFNode fromNode, String fromEventOut,

void SFNode toNode, String toEventin)

deleteRoute( SFNode fromNode, String fromEventOut,

void SFNode toNode, String toEventin )
void loadURL ( MFString url, MFString parameter )
void setDescription( String description )

C.6.4 SFColor object

C.6.4.1 Description

The SFColor object corresponds to a VRML SFColor field. All properties are accessed using the syntax
sfColor ObjectName.< property>, wheresfColorObjectName is an instance of an SFColor object. The properties may

190



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

also be accessed by the indices [0] for red, [1] for green and [2] blue. All functions are invoked using the synte
sfCol or ObjectName.method(< argument-list>), wheresfCol or ObjectName is an instance of an SFColor object.

C.6.4.2 Instance cr eation function
sfColorObjectName = new SFColor(float, float g, float b)
where

r, g, andb are the red, green, and blue values of the colour. Missing values will be filled by 0.0.

C.6.4.3 Properties

The properties of the SFColor object are describ8chbie C.2

Table C.2-- SFColor properties

Property Description

numericr ||red component of the colour

numericg ||green component of the colour

numericb ||blue component of the colour

C.6.4.4 Functions

The functions of the SFColor object are describetiainle C.3

Table C.3-- SFColor functions

Function Description

Sets the value of the colour by specifying the valueshud,

void setHSV(float, floats, float v) saturation. andvalue

: Returns the value of the colour in a 3 element numeric array| |with
numericf3] getHSv() hue at index Ogaturation at index 1, andalue at index 2.

Returns a String containing the ISO/IEC 14772 UTF-8 endaded

String toString( ) value ofr, g andb.

C.6.5 SFImage obj ect

C.6.5.1 Description

The SFImage object corresponds to a VRML SFImage field.

191



ISO/IEC 14772-1:1997(E)

C.6.5.2 Instance cr eation function

sfimageObjectName = new SFImage(numerig numericy, numericcomp, MFInt32 array)

where

Copyright © The VRML Consortium Incorporated

x is the x-dimension of the imagg.is the y-dimension of the imageomp is the number of components of the
image (1 for greyscale, 2 for greyscale+alpha, 3 for rgb, 4 for rgb+alpha@y contains thex x y values for the

pixels of the image. The format of each pixel is an SFImage as Hixb& exturenode.

C.6.5.3 Properties

The properties of the SFImage object are listethinle C.4

Table C.4 -- SFImage properties

Property Description
numericx x dimension of the image
numericy y dimension of the image
number of components of the image:
1: greyscale
numericcomp 2: greyscale + alpha
3:rgb
4: rgb + alpha
MFInt32array image data

C.6.5.4 Functions

The function of the SFImage object is describedahle C.5

Table C.5 -- SFImage function

Function Description

String toString( ]| Returns a String containing the ISO/IEC 14772 UTF-8 encoded value of x, y, comp a

I

d array.

C.6.6 SFNode obj ect

C.6.6.1 Description

The SFNode object corresponds to a VRML SFNode field.

192



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

C.6.6.2 Instance creation function
sfNodeObjectName = new SFNode(Stringrmistring)
where

vrmistring is an ISO 10646 string containing a legal VRML string as described.i2.10.9, MFNode
createVrmlFromString( SFString vrmISyntaxf)the string produces other than one top-level node, the results are
undefined. The string may contain any number of ROUTE's, PROTO's, and EXTERNPROTO's in accordance wi
4.12.10.9, MENode createVrmlFromString( SEString vrmlSyntax )

C.6.6.3 Properties

Each node may assign values to its eventins and obtain the last output values of its eventOuts using |
sfNodeObjectName.eventName syntax.

C.6.6.4 functions

The function of the SFNode object is describediable C.6

Table C.6 -- SFNode function

Function Description

Returns the VRML UTF-8 string that, if parsed as the value of an SFNode field, |yould

produce this node. If the browser is unable to reproduce this node, the name of fje node
followed by the open brace and close brace shall be returned. Additional information|may be
included as one or more VRML comment strings.

String toString( )

C.6.7 SFRotation object

C.6.7.1 Description

The SFRotation object corresponds to a VRML SFRotation field. It has four numeric properties: X, y, z (the axis ¢
rotation) and angle. These may also be addressed by indices [0] through [3].

C.6.7.2 Instance creation functions
sfRotationObjectName = new SFRotation(numerig numericy, numericz, numericangle)
where

X, ¥, andz are the axis of the rotatioangle is the angle of the rotation (in radians). Missing values default to 0.0,
excepty, which defaults to 1.0.

sfRotationObjectName = new SFRotatiorfFVec3faxis, numericangle)
where
axisis the axis of rotatiorangle is the angle of the rotation (in radians)

sfRotationObjectName = new SFRotatiorfFVec3ffromVector, SFVec3ftoVector)

193



ISO/IEC 14772-1:1997(E)

where

Copyright © The VRML Consortium Incorporated

fromVector andtoVector are normalized and the rotation value that would rotate frofrah®/ector to thetoVector

is stored in the object.

C.6.7.3 Properties

The properties of the SFRotation object are describédhie C.7

Table C.7 -- SFRotation properties

Property Description
numericx first value of the axis vector
numericy second value of the axis vector
numericz third value of the axis vector
numericangle the angle of the rotation (in radians)

C.6.7.4 Functions

The functions of the SFRotation object are describdabie C.8

Table C.8 -- SFRotation functions

Function

Description

SFVec3f getAxis( )

Returns the axis of rotation.

SFRotation inverse( )

Returns the inverse of this object's rotation.

SFRotation multiply(SFRotatiorot)

Returns the object multiplied by the passed value

SFVec3f multVec(SFVec3fec)

Returns the value ofec multiplied by the matri
corresponding to this object's rotation.

void setAxis(SFVec3bec)

Sets the axis of rotation to the value passeedn

SFRotation slerp(SFRotatiaest, numerict)

Returns the value of the spherical linear interpola
between this object's rotation adeks at value 0 <=t
<= 1. Fort = 0, the value is this object's rotation. H
=1, the value iglest.

[fion

String toString( )

Returns a String containing the ISO/IEC 14772 U
8 encoded value of x, y, z, and angle.

TF-

194



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

C.6.8 SFVec2f object

C.6.8.1 Description

The SFVec2f object corresponds to a VRML SFVec?2f field. Each component of the vector can be accessed usi
thex andy properties or using C-style array dereferencing @¢ec2fObjectName[ 0] or sfVec2fObjectName[ 1] ).

C.6.8.2 Instance creation function
sfVec2fObjectName = new SFVec2f(numerig, numericy)

Missing values default to 0.0.

C.6.8.3 Properties

The properties of the SFVec2f object are describ8éibie C.9

Table C.9 -- SFVec2f properties

Property Description
numericx First value of the vector.
numericy Second value of the vector.

C.6.8.4 Functions

The functions of the SFVec2f object are describeliainle C.10

Table C.10 -- SFVec2f functions

Function Description
SFVec2f add(SFVeciec) oRk?jtlgps the value of the passed value added, component-wise,|to the
SFVec2f divide(numerin) Returns the value of the object divided by the passed value.
numeric dot(SFVecafec) Returns the dot product of this vector and the passed value.
numeric length( ) Returns the geometric length of this vector.
SFVec2f multiply(numerio) Returns the value of the object multiplied by the passed value.
SFVec2f normalize( ) Returns the object converted to unit length .

Returns the val ue of the passed val ue subtracted, component-wise, from

SFVec2f subtract(SFVecgec) the object

Returns a String containing the ISO/IEC 14772 UTF-8 encoded value of

String toString( ) x andy

195



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

C.6.9 SFVec3f object

C.6.9.1 Description

The SFVec3f object corresponds to a VRML SFVec3f field. Each component of the vector can be accessed using
the x, y, and z properties or using C-style array dereferencingsiiec3fObjectName[ 0], sf\VVec3fObjectName] 1]
or sfVec3fObjectName] 2] ).

C.6.9.2 Instance creation function
sfVec3fObjectName = new SFVec3f(numerig, numericy, numericz)

Missing values default to 0.0.

C.6.9.3 Properties

The properties of the SFVec3f object are describddbie C.11

Table C.11 -- SFVec2f properties

Property Description
numericx First value of the vector.
numericy Second value of the vector.
numericz Third value of the vector.

C.6.9.4 Functions

The functions of the SFVec3f object are describetiainle C.12

Table C.12 -- SFVec3f functions

Function Description
SFVec3f add(SFVec3iec) VI?/iGStg,r?St:]heeo\k/)?gé?. of the passed value added, compphent-
SFVec3f cross(SFVec3kc) Returns the cross product of the object and the passed|vyalue.
SFVec3f divide(numerin) Returns the value of the object divided by the passed v.{alue.
numeric dot(SFVec3fec) Returns the dot product of this vector and the passed V*i ue.
numeric length( ) Returns the geometric length of this vector.

196



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Returns the value of the object multiplied by the pagsed

SFVec3f multiplygumeric n) value

Returns the value of the component-wise negation df| the

SFVec3f negate( ) object

SFVec3f normalize( ) Returns the object converted to unit length .

Returns the value of the passed value subtrgcted,

SFVec3f subtract(SFVecSec) component-wise, from the object.

Returns a String containing the ISO/IEC 14772 UTF-8

String toString( ) encoded value of x, y, and z.

C.6.10 MFColor object

C.6.10.1 Description

The MFColor object corresponds to a VRML MFColor field. It is used to store a one-dimensional array of SFColo
objects. Individual elements of the array can be referenced using the standard C-style dereferencing opere
(e.g.,mfColorObjectName|index], whereindex is an integer-valued expression with Oixdex < length and length

is the number of elements in the array). Assigning to an elemeningik >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFColor (0, O, 0).

C.6.10.2 Instance creation function
mfCol or ObjectName = new MFColor(SFColocl, SFColorc2, ...)

The creation function shall initialize the array using 0 or more SFColor-valued expressions passed as parameters.

C.6.10.3 Property

The property of the MFColor object is described @ble C.13

Table C.13 -- MFColor properties

Property Description

numericlength | |property for getting/setting the number of elements in the array.

C.6.10.4 Function

The single function of the MFColor object is describedahle C.14

Table C.14 -- MFColor functions

Function Description

197



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

String toString( )| Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFColor grray.

C.6.11 MFFloat object

C.6.11.1 Description

The MFFloat object corresponds to a VRML MFFloat field. It is used to store a one-dimensional array of SFFloat
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g.,mfFloatObjectName]index], whereindex is an integer-valued expression with Oigdex < length and length is

the number of elements in the array). Assigning to an elementindéit >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.0.

C.6.11.2 Instance creation function
mfFloatObjectName = new MFFloat(numerial, numericn2, ...)
where

The creation function shall initialize the array using 0 or more numeric-valued expressions passed as parameters.

C.6.11.3 Property

The property of the MFFloat object is described able C.15

Table C.15 -- MFFloat properties

Property Description

numericlength ||property for getting/setting the number of elements in the array.

C.6.11.4 Function

The single function of the MFFloat object is described@able C.16

Table C.16 -- MFFloat function

Function Description

String toString( )| Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFFloat &

-
-

ay.

C.6.12 MFInt32 object

C.6.12.1 Description

The MFInt32 object corresponds to a VRML MFInt32 field. It is used to store a one-dimensional array of SFInt32
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g.,mfInt320bjectNamefindex] , whereindex is an integer-valued expression with Oixgex < length and length is

198



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

the number of elements in the array). Assigning to an elementindét >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.

C.6.12.2 Instance creation function
mflnt320bjectName = new MFInt32(numeriail, numericn2, ...)
where

The creation function shall initialize the array using 0 or more integer-valued expressions passed as parameters.

C.6.12.3 Property

The property of the MFInt32 object is described able C.17

Table C.17 -- MFInt32 property

Property Description

numericlength ||property for getting/setting the number of elements in the array.

C.6.12.4 Function

The single function of the MFInt32 object is describedable C.18

Table C.18 -- MFInt32 function

Function Description

String toString( ){| Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFInt32 afray.

C.6.13 MFNode obj ect

C.6.13.1 Description

The MFNode object corresponds to a VRML MFNode field. It is used to store a one-dimensional array of SFNod
objects. Individual elements of the array can be referenced using the standard C-style dereferencing opere
(e.g.,mfNodeObjectName[index], whereindex is an integer-valued expression with Oigdex < length and length is

the number of elements in the array). Assigning to an elementindéit >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to NULL.

C.6.13.2 Instance creation function
mfNodeObjectName = new MFNode(SFNodel, SFNoden2, ...)
where

The creation function shall initialize the array using 0 or more SFNode-valued expressions passed as parameters.

199



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

C.6.13.3 Property

The property of the MFNode object is describedatle C.19

Table C.19 -- MFNode property

Property Description

numericlength | |property for getting/setting the number of elements in the array.

C.6.13.4 Function

The single function of the MFNode object is describetahle C.20

Table C.20 -- MFNode function

Function Description

Returns the VRML UTF-8 string that, if parsed as the value of a MFNode field, would prodyce this

String to | array of nodes. If the browser is unable to reproduce this node, the name of the node followed by the
tring() ||open brace and close brace shall be returned. Additional information may be included as ong or more

VRML comment strings

C.6.14 MFRotation object

C.6.14.1 Description

The MFRotation object corresponds to a VRML MFRotation field. It is used to store a one-dimensional array of
SFRotation objects. Individual elements of the array can be referenced using the standard C-style dereferencing
operator (e.g.nfRotationObjectName[index], whereindex is an integer-valued expression with O ixdex < length

and length is the number of elements in the array). Assigning to an elemeiridaith = length results in the array

being dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFRotation
(0,0,1,0).

C.6.14.2 Instance creation function
mfRotationObjectName = new MFRotation(SFRotatiorl, SFRotatiorr2, ...)
where

The creation function shall initialize the array using 0 or more SFRotation-valued expressions passed as parameters.

C.6.14.3 Property

The property of the MFRotation object is describedlable C.21

Table C.21 -- MFRotation property

Property Description

200



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

numericlength ||property for getting/setting the number of elements in the array.

C.6.14.4 Function

The single function of the MFRotation object is describeBaible C.22

Table C.22 -- MFRotation function

Function Description

String toString( ]| Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFRotatio|1 array.

C.6.15 M FString object

C.6.15.1 Description

The MFString object corresponds to a VRML 2.0 MFString field. It is used to store a one-dimensional array o
String objects. Individual elements of the array can be referenced using the standard C-style dereferencing oper:
(e.g.,mfSringObjectName]index], whereindex is an integer-valued expression with Oixdex < length and length

is the number of elements in the array). Assigning to an elemeningigh >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to the empty string.

C.6.15.2 Instance creation function
mfSringObjectName = new MFString(Stringsl, Strings2, ...)
where

The creation function shall initialize the array using 0 or more String-valued expressions passed as parameters.

C.6.15.3 Property

The property of the MFString object is describedable C.23

Table C.23 -- MFString property

Property Description

numericlength ||property for getting/setting the number of elements in the array.

C.6.15.4 Function

The single function of the MFString object is describedable C.24

Table C.24 -- MFString function

Function Description

201



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

String toString( )| Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFString eirray.

C.6.16 MFTime object

C.6.16.1 Description

The MFTime object corresponds to a VRML MFTime field. It is used to store a one-dimensional array of SFTime
values. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g.,mTimeObjectNamelindex], whereindex is an integer-valued expression with Oirdex < length and length is

the number of elements in the array). Assigning to an elementindéit >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to 0.0.

C.6.16.2 Instance creation function
mfTimeObjectName = new MFTime(numeriail, numericn2, ...)

The creation function shall initialize the array using 0 or more numeric-valued expressions passed as parameters.

C.6.16.3 Property

The property of the MFTime object is described @ble C.25

TableC.25 -- MFTime property

Property Description

numericlength ||property for getting/setting the number of elements in the array.

C.6.16.4 Function

The function of the MFTime object is described’able C.26

Table C.26 -- MFTime function

Function Description

String toString( )] | Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFTime ayray.

C.6.17 MFVec2f object

C.6.17.1 Description

The MFVec2f object corresponds to a VRML MFVec2f field. It is used to store a one-dimensional array of SFVec2f
objects. Individual elements of the array can be referenced using the standard C-style dereferencing operator
(e.g.,mfVec2fObjectName[index], whereindex is an integer-valued expression with Oixdex < length and length

is the number of elements in the array). Assigning to an elemeninaih >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFVec2f (0, 0).

202



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

C.6.17.2 Instance creation function
mfVec2fObjectName = new MFVec2f(SFVec2¥l, SFVec2fv2, ...)

The creation function shall initialize the array using 0 or more SFVec2f-valued expressions passed as parameters.

C.6.17.3 Property

The property of the MFVec2f object is described able C.27

Table C.27 -- MFVec2f property

Property Description

numericlength ||property for getting/setting the number of elements in the array.

C.6.17.4 Function

The single function of the MFVec2f object is describediable C.28

Table C.28 -- MFVec2f function

Function Description

String toString( )| Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFVec2f eivray.

C.6.18 MFVec3f object

C.6.18.1 Description

The MFVec3f object corresponds to a VRML MFVec3f field. It is used to store a one-dimensional array of SFVec3
objects. Individual elements of the array can be referenced using the standard C-style dereferencing opere
(e.g.,mfVec3fObjectName[index], whereindex is an integer-valued expression with O ixdex < length and length

is the number of elements in the array). Assigning to an elemenindik >= length results in the array being
dynamically expanded to contain length elements. All elements not explicitly initialized are set to SFVec3f (0, 0, 0)
C.6.18.2 Instance creation function

mf\Vec3fObjectName = new MFVec3f(SFVec3¥1, SFVec3fv2,...)

where

The creation function shall initialize the array using 0 or more SFVec3f-valued expressions passed as parameters.

C.6.18.3 Property

The property of the MFVec3f object is described &ble C.29

203



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Table C.29 -- MFVec3f property

Property

Description

numericlength

property for getting/setting the number of elements in the array.

C.6.18.4 Function

The single function of the MFVec3f object is describedable C.30

Table C.30 -- MFVec3f function

Function

Description

String toString( )

=

ay.

Returns a String containing the ISO/IEC 14772 utf 8 encoded value of the MFVec3f eix

C.6.19 VrmIMatrix object

C.6.19.1 Description

The VrmIMatrix object provides many useful functions for performing manipulations on 4x4 matrices. Each of
element of the matrix can be accessed using C-style array dereferencimgr{iMatrixObjectName[0][1] is the
element in row 0, column 1). The results of dereferencing a VrmIMatrix object using a single index
(i.e, vrmIMatrixObjectName[0]) are undefined. The translation elements are in the fourth row. For example,
vrmIMatrixObjectName[3][0] is the X offset.

C.6.19.2 Instance creation functions

VrmlMatrixObjectName = new VrmIMatrix(

nunigtimumericf12, numericf13, numericfi4,
nunfigtimumericf22, numericf23, numericf24,
nuni@ticumericf32, numericf33, numericf34,
nunfidéticyumericf42, numericf43, numericf44)

A new matrix initialized with the values 11 throughf44 is created and returned. The translation values will be

f41, f42, andf43.

VrmlMatrixObjectName = new VrmIMatrix( )

A new matrix initialized with the identity matrix is created and returned.

C.6.19.3 Properties

The VRMLMatrix object has no properties.

C.6.19.4 Functions

The functions of the VRMLMatrix object are listedTiable C.31

204



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Table C.31 -- VRMLMatrix functions

Function Description

Sets the VrmIMatrix to the passed values. Any of the

void setTransform(SFVec3fandation, rightmost parameters may be omitted. The function hfis 0
SFRotatigntation, to 5 parameters. For example, specifying O parametefs
SFVec3tale, results in an identity matrix while specifying 1 paramgter
SFRotatiasaleOrientation, results in a translation and specifying 2 parameters rgsults
SFVec8énter) in a translation and a rotation. Any unspecified parameter

is set to its default as specified for firmnsformnode.

Decomposes the VrmIMatrix and returns the compongnts
in the passettandation, rotation, andscale objects The

void getTransform(SFVec3fandation, types of these passed objects is the same as the firstfthree
SFRotationtation, arguments taetTransform. If any passed object is not
SFVec3fscale) sent, or if the null object is sent for any value, that vallle

—

is not returned. Any projection or shear information in|the

maitrix is ignored.

Returns a VrmIMatrix whose value is the inverse of this

VrmlIMatrix inverse( ) object

Returns a VrmIMatrix whose value is the transpose of this

VrmlIMatrix transpose( ) object

Returns a VrmIMatrix whose value is the object

VrmlIMatrix multLeft(VrmIMatrix matrix) multiplied by the passematrix on the left.

Returns a VrmIMatrix whose value is the object

VrmlIMatrix multRight(VrmIMatrix matrix) multiplied by the passematrix on the right.

Returns an SFVec3f whose value is the object multipled

SfVec3f multVecMatrix(SFVec3fec) by the passed row vector

Returns an SFVec3f whose value is the object multipled

SFVec3f multMatrixVec(SFVec3fec) by the passed column vector

String toString( ) Returns a String containing the values of the VrmIMzix rix.

a7 . ™)
meL.-”L_ﬁj/—

@C.7 Examples

The following is an example of &criptnode which determines whether a given colour contains a lot of red. The
Script node exposes a Color field, an eventin, and an eventOut:

DEF Exanple_1 Script {
field SFCol or currentColor 0 0 O
eventln SFColor colorln

205



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

event Qut SFBool isRed

url "javascript:
function colorln(newColor, ts) {
// This function is called when a colorln event is received
current Col or = newCol or;

}

function eventsProcessed( ) {
if (currentColor[0] >= 0.5)
/1 if red is at or above 50%
i sSRed = true;
}II
}

Details on when the functions defined in Example_1 Script are called are provitléd.iy Script execution

The following example illustrate use of the createVrmIFromURL( ) function:

DEF Exanple_2 Script {
field SFNode nysel f USE Exanpl e_2
field SFNode root USE ROOT_TRANSFORM
field MFString url "foo.wl"
event | n MFNode nodesLoaded
event I n SFBool trigger_event

url "javascript:
function trigger_event(value, ts){
/1 do sonething and then fetch val ues
Browser. creat eVRMLFronURL(url, nyself, ’nodesLoaded’);
}

function nodesLoaded(val ue, tinestanp)(
if (value.length > 5) {
/1 do sonething nore than 5 nodes in this M-Node...

root. addChil dren = val ue;
}II
}

The following example illustrates use of the addRoute( ) function:

DEF Sensor TouchSensor {}

DEF Baa Script {
field SFNode nysel f USE Baa
field SFNode fronNode USE Sensor
eventl n SFBool clicked
event |l n SFBool trigger_event

url "javascript:
function trigger_event(eventln_val ue){
/1 do sonething and then add routing
Browser . addRout e(fronNode, ’'isActive', nyself, 'clicked );
}

function clicked(val ue){

206



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

/1 do sonething

}e
}
The following example illustrates assigning with references and assigning by copying:
Script {
eventln SFBool el
event Qut SFVec3f eO
field MFVec3f f []
url "javascript:
function el () {
eO = new SFVec3f(0,1,2); [// 'eO contains the value
/1 (0,1,2) which will be sent
// out when the function
/1 is conplete.
a = eQ // "a references the event Qut
[Tk
b = a; // "a and 'b’ now both reference
[Tk
a.x = 3; /1 7e0 wll send (3,1,2) at the
/1 end of the function
f[1] = a; /1 "f[1]" contains the val ue
/1 (3,1,2).
c = f[1]; /1 "¢’ reference the field
/1 element f[1]
flil.y = 4; /1 "f[1]" and 'c¢’ both contain
Il (3,4,2)
}e
}

The following example illustrates uses of the fields and functions of SFVec3f and MFVec3f:

DEF SCR- VEC3F Script {

eventln SFTi ne touchedl

eventln SFTi ne touched2

event I n SFTi me touched3

event I n SFTi me touched4

event Qut SFVec3f new_translation
field SFInt32 count 1

field MFVec3f verts []

url "javascript:
function initialize( ) {

verts[0] = new SFVec3f (0, 0, 0);

verts[ 1] = new SFVec3f (1, 1.732, 0);
verts[2] = new SFVec3f(2, 0, 0);
verts[3] = new SFVec3f (1, 0.577, 1.732);

}

function touchedl (val ue) {
new translation = verts[count]; // nove sphere around tetra
count ++;
if (count >= verts.length) count = 1;

}

function touched2 (val ue) {

207



ISO/IEC 14772-1:1997(E)

Copyright © The VRML Consortium Incorporated

var tVec;

tVec = new_translation.divide(2); // Zeno' s paradox to origin
new transl ati on = new_transl ation. subtract (tVec);

}

function touched4 (val ue) {
new translation = new_transl ation. negate( );

}
function touched3 (val ue) {

var a;

a = verts[1].length( );

a = verts[3].dot(verts[2].cross(verts[1]));

a = verts[1].x;

new_translation = verts[2].normalize( );

new transl ati on = new_transl ation.add(new_transl ation);
}e

208

\.IF!.I'I'II_HTL_@—



Copyright © The VRML Consortium Incorporated

Annex D

(informative)

Examples

wnmu?@—
@D.1 Introduction and table of contents

Thisannex provides a variety of VRML examples.

D.1 Introduction and table of contents

D.2 Smple example

D.3 Ingtancing (sharing)

D.4 Prototype example

D.5 Scripting example

D.6 Geometric properties

D.7 Prototypes and alternate representations

D.8 Anchor

D.9 Directiond light

D.10 PointSet

D.11 Level of detail

D.12 Color interpol ator

D.13 TimeSensor
D.13.1 Introduction
D.13.2 Click to animate
D.13.3 Alarm clock

D.14 Shuttles and pendulums

D.15 Robot

D.16 Chopper

D.17 Guided tour

D.18 Elevator

D.19 Execution model

wnmu?@—

®D.2 Simple example

ISO/IEC 14772-1:1997(E)

This example contains a simple scene defining a view of ared sphere and a blue box, lit by a directiona light:

209



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Figure D.1: Red sphere meets blue box

#VRML V2.0 utf8
Transform {
children [
Navi gationlnfo { headlight FALSE } # W’Il add our own |ight

Di rectional Li ght { # First child
direction 0 0 -1 # Light illumnating the scene
}
Transform { # Second child - a red sphere
translation 3 0 1
children [
Shape {

geonetry Sphere { radius 2.3 }
appear ance Appear ance {
material Material { diffuseColor 1 0 O } # Red

}
}
]
}
Transform { # Third child - a blue box
translation -2.4 .2 1
rotation 011 .9
children [
Shape {
geonetry Box {}
appear ance Appear ance {
material Material { diffuseColor 0 O 1 } # Blue
}
}
]
}
] # end of children for world

}

Click hereto view this examplein a VRML browser.

210



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

a7
"\]FlmL;”Lﬁ/—

@®D.3 Instancing (sharing)

Reading the following file results in three spheres being drawn. The first sphere defines a unit sphere at the origin
named "Joe", the second sphere defines a smaller sphere trandated along the +x axis, the third sphere is areference
to the second sphere and is trandated along the -x axis. If any changes occur to the second sphere (e.g. radius
changes), then the third sphere, will change too:

Figure D.2: Instancing

#VRML V2.0 utf8
Transform {
children [
DEF Joe Shape { geonetry Sphere {} }
Transform {
translation 2 0 0
chil dren DEF Joe Shape { geonetry Sphere { radius .2 } }
}
Transform {
translation -2 0 0
chil dren USE Joe
}

]
}

Click here to view this example in a VRML browser. (Note that the spheres are unlit because no appearance was
specified.)

a7
"\]FlmL;”Lﬁ/—

@D .4 Prototype example

A smple table with variable colours for the legs and top might be prototyped as:

211



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

Figure D.3: Prototype

#VRML V2.0 utf8

PROTO TwoCol or Table [ field SFColor legColor .8 .4 .7
field SFColor topColor .6 .6 .1 ]

{

Transform {
children [
Transform { # table top
translation 0 0.6 0O
children
Shape {
appear ance Appear ance {
material Material { diffuseColor IS topColor }
}
geonetry Box { size 1.2 0.2 1.2}
}
}

Transform { # first table leg
translation -.5 0 -.5
chil dren
DEF Leg Shape {
appear ance Appear ance {
material Material { diffuseColor IS |egColor }

}
geonetry Cylinder { height 1 radius .1}

}

Transform { # another table |eg
translation .5 0 -.5
children USE Leg

Transform { # another table |eg

translation -.5 0 .5
children USE Leg

212



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

}

Transform { # another table |eg
translation .5 0 .5
children USE Leg
}
] # End of root Transfornis children
} # End of root Transform
} # End of prototype

# The prototype is now defined. A though it contains a
# nunmber of nodes, only the | egCol or and topCol or fields
# are public. Instead of using the default |egColor and
# topColor, this instance of the table has red | egs and
# a green top:

TwoCol or Tabl e {
legColor 1 0 O topColor 0 1 0

}
Navi gationlnfo { type "EXAM NE" } # Use the Exam ne viewer

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HT{@—

@®D.5 Scripting example

This Script node decides whether or not to open a bank vault given openVault and combinationEntered messages.
To do this, it remembers whether or not the correct combination has been entered. The Script node combined with a
Sphere, a TouchSensor and a Sound node to show how is works. When the pointing device is over the sphere, the
combinationEntered eventln of the Script is sent. Then, when the Sphere is touched (typically when the mouse
button is pressed) the Script is sent the openVault eventin. This generates the vaultUnlocked eventOut which starts a
‘click’ sound. Hereisthe example:

#VRML V2.0 utf8

DEF OpenVault Script {
# Decl arations of what's in this Script node:
event I n SFTi me openVaul t
event I n SFBool conbi nati onEntered
event Qut SFTi ne vaul t Unl ocked
field SFBool unl ocked FALSE

# I npl ementation of the |ogic:
url "javascript:
function conbi nati onEnt ered(val ue) { unl ocked = val ue; }
function openVaul t (val ue) {
i f (unlocked) vaul tUnl ocked = val ue;
}e
}

Shape {
appear ance Appearance {
material Material { diffuseColor 1 0 O }

213



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

}
geonetry Sphere { }
}
Sound {
source DEF dick Audiodip {
ur | "click.wav"
stopTine 1
}
m nFr ont 1000
max Fr ont 1000
m nBack 1000
max Back 1000
}

DEF TS TouchSensor { }

ROUTE TS.isOver TO OpenVaul t. conbi nati onEnt er ed
ROUTE TS. touchTine TO OpenVaul t. openVaul t
ROUTE OpenVaul t. vaul t Unl ocked TO dick.startTi nme

Note that the openVault eventln and the vaultUnlocked eventOut are of type SFTime, which allows them to be wired
directly to a TouchSensor or TimeSensor.

Click hereto view thisexamplein a VRML browser.

\.IF!.I'I'II_HTL_@—

@®D.6 Geometric properties

The following IndexedFaceSet (contained in a Shape node) uses all four of the geometric property nodes to specify
vertex coordinates, colours per vertex, normals per vertex, and texture coordinates per vertex (note that the material
sets the overall transparency):

#VRML V2.0 utf8

Shape {
geonetry | ndexedFaceSet {
coordlndex [ O, 1, 3, -1, 0, 2, 3, -1]
coord Coordi nate {
point [ 000, 100, 10-1, 0.510]

color Color {
color [ 0.2 0.7 0.8 0.500, 0.1 0.80.1, 000.7]
}

nor mal Normal {
vector [ 001, 001, 001, 001]

t exCoord TextureCoordi nate {
point [ 00, 10, 10.4, 11]
}
}

appear ance Appear ance {

214



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

material Material { transparency 0.5 }
texture Pixel Texture {

imge 2 2 1 OxFF 0x80 0x80 OxFF
}

}

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—

@D.7 Prototypes and alternate representations

VRML 2.0 has the capability to define new nodes. The following is an example of a new node RefractiveMaterial.
This node behaves as a Material node with an added fidd, indexOfRefraction. The lis of URLs for the
EXTERNPROTO are searched in order. If the browser recognizes the URN,

urn:inet:foo.comtypes: Refracti veMateri al,
it may treat it as a native type (or load the implementation). Otherwise, the URL,
htt p: // wwv. myConpany. coni vr ml Nodes/ RefractiveMaterial .wl,

isused as a backup to ensure that the node is supported on any browsers. See below for the PROTO implementation
that treats RefractiveMateria asa Material (and ignores the refractivel ndex fiel d).

#VRML V2.0 utf8

# external protype definition
EXTERNPROTO RefractiveMaterial [
exposedFi el d SFFl oat anbientlntensity
exposedFi el d SFCol or diffuseCol or
exposedFi el d SFCol or specul ar Col or
exposedFi el d SFCol or em ssi veCol or
exposedFi el d SFFl oat shi ni ness
exposedFi el d SFFl oat transparency
exposedFi el d SFFl oat indexOf Refraction ]
[
"urn:inet:foo.comtypes: RefractiveMaterial",
"http://www. myConpany. conl vr ml Nodes/ RefractiveMaterial .wl",
"refractivematerial .wl",

]

Shape {
geonetry Sphere { }
appear ance Appearance {
# I nstance of a RefractiveMateri al
material RefractiveMaterial ({
anmbi entintensity 0.2
di f f useCol or 100
i ndexOF Refraction 0.3

215



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

The URL http://wwmv. myConpany. coni vrml Nodes/ RefractiveMaterial.w!| contains the
following:

#VRML V2.0 utf8

PROTO RefractiveMaterial [ # prototype definition
exposedFi el d SFFl oat anbientintensity O
exposedFi el d SFCol or diffuseCol or 0.5 0.5 0.5
exposedFi el d SFCol or specul ar Col or 00
exposedFi el d SFCol or em ssi veCol or 00

0
0
exposedFi el d SFFl oat shi ni ness 0
exposedFi el d SFFl oat transparency 0

0

exposedFi el d SFFl oat i ndexOf Refracti on 1]
{
Materi al {
anmbientintensity IS anbientintensity
di f f useCol or 'S diffuseCol or
specul ar Col or I' S specul ar Col or
em ssi veCol or I' S emi ssiveCol or
shi ni ness I'S shini ness
transpar ency I S transparency
}
}

Note that the name of the new node type, RefractiveMaterial, is not used by the browser to decide if the node is
native or not; the URL/URN names determine the node’s implementation.

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HT{@—
@®D.8 Anchor

Thetarget parameter can be used by the anchor node to send arequest to load a URL into another frame:

Anchor {
url "http://sonmehost/sonefile. htm ™"
paraneter [ "target=name_of frane" ]
chil dren Shape { geonetry Cylinder {} }
}

An Anchor may be used to bind the viewer to a particular viewpoint in a virtual world by specifying a URL ending
with #viewpointName, where viewpointName is the DEF name of a viewpoint defined in the world. For example:

Anchor {
url "http://ww. school . edu/vrm / someScene. w | #Cver Vi ew'
chil dren Shape { geonetry Box {} }

}

specifies an anchor that puts the viewer in the someScene world bound to the viewpoint named OverView when the
box is chosen (note that OverView is the DEF name of the viewpoint, not the value of the viewpoint's description
fidd).

If noworld is specified, the current sceneisimplied. For example:

216



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Anchor {
url "#Doorway"
chil dren Shape { geonetry Sphere {} }

}

binds the user’s view to the viewpoint with the DEF name Doorway in the current scene.

\.IF!.I'I'II_HTL_@—
@D .9 Directional light

A directional light source illuminates only the objects in its enclosing grouping node. The light illuminates
everything within this coordinate system including the objects that precede it in the scene graph as shown below:

#VRML V2.0 utf8

G oup {
children [
DEF Unlit ShapeOne Transform {
translation -3 0 0

chil dren Shape {
appear ance DEF App Appearance {
material Material {
di ffuseColor 0.8 0.4 0.2

}
}
geonetry Box { }
}
}
DEF LitParent G oup {
children [

DEF Lit ShapeOne Transform {
translation 0 2 0

chi l dren Shape {
appear ance USE App
geonetry Sphere { }

}

# lights the shapes under LitParent

Di rectional Light { }

DEF Lit ShapeTwo Transform {
translation 0 -2 0

chi l dren Shape {

appear ance USE App
geonetry Cylinder { }

217



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

}

DEF Unlit ShapeTwo Transform {
translation 3 0 0

chi l dren Shape {
appear ance USE App
geonetry Cone { }

}

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—
@®D.10 PointSet

This simple example defines a PointSet composed of 3 points. Thefirg pointisred (1 0 0), the second point is green
(0 1 0), and the third point is blue (0 0 1). The second PointSet instances the Coordinate node defined in the first
PointSet, but defines different colours:

#VRML V2.0 utf8

Shape {
geonetry Poi nt Set {
coord DEF mypts Coordi nate {
point [ 000, 222, 333]

}
color Color { color [ 100, 010, O0O01] }

}

Transform {
translation 2 0 O

chil dren Shape {
geonetry Point Set {
coord USE mypts
color Color { color [ .5.50, 0.5.5, 111]}

}

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—
@D.11 Leve of detall

The LOD node istypically used for switching between different versions of geometry at specified distances from the
viewer. However, if therangefield isleft at its default value, the browser selects the most appropriate child from the

218



Copyright © The VRML Consortium Incorporated

ISO/IEC 14772-1:1997(E)

list given. It can make this selection based on performance or perceived importance of the object. Children should be
listed with most detailed version first just as for the normal case. This "performance LOD" feature can be combined

with the normal LOD function to give the browser a selection of children from which to choose at each distance.

In this example, the browser is free to choose either a detailed or a less-detailed version of the object when the
viewer is closer than 10 meters (as measured in the coordinate space of the LOD). The browser should display the
less detailed version of the object if the viewer is between 10 and 50 meters and should display nothing at al if the
viewer is farther than 50 meters. Browsers should try to honor the hints given by authors, and authors should try to

give browsers as much freedom as they can to choose levels of detail based on performance.

#VRML V2.0 utf8

LOD {
range [ 10, 50 ]
level [
LOD {
level [
Shape { geonetry Sphere { } }
DEF LoRes Shape { geonetry Box { } }
]
}
USE LoRes,
Shape { } # Display nothing
]
}

For best results, ranges should be specified only where necessary and LOD nodes should be nested with and without

ranges.

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—

@®D.12 Color interpolator

Thisexample interpol ates from red to green to blue in a 10 second cycle:

#VRML V2.0 utf8

DEF nyCol or Col orlnterpol ator {
key [ 0.0, 0.5, 1.0 ]
keyVal ue [ 100, 010, 001] #red, green, blue

}
DEF nyd ock Ti meSensor {
cyclelnterval 10.0 # 10 second ani mation
| oop TRUE # infinitely cycling aninmation
}
Shape {

appear ance Appear ance {
material DEF nyMaterial Material { }
}

geonetry Sphere { }

219



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

}

RQUTE myd ock. fracti on_changed TO nyCol or. set _fraction
RQUTE myCol or. val ue_changed TO nyMateri al . set _diffuseCol or

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—
@D.13 TimeSensor

D.13.1 Introduction

The TimeSensor is very flexible. The following are some of the many ways in which it can be used:

e. aTimeSensor can be triggered to run continuously by setting cyclelnterval > 0, and loop = TRUE, and then
routing a time output from another node that triggers the loop (e.g.,, the touchTime eventOut of a
TouchSensor can be routed to the TimeSensor’s sartTime to start the TimeSensor running).

f. aTimeSensor can be made to run continuously upon reading by setting cyclelnterval > 0, startTime > O,
stopTime =0, and loop = TRUE.

D.13.2 Click to animate

The first example animates a box when the user clicks on it:

#VRML V2.0 utf8

DEF XForm Transform {
children [
Shape {
appear ance Appear ance {
material Material { diffuseColor 1 0 O }
}

geonetry Box {}
}
DEF dicker TouchSensor {}

# Run once for 2 sec.
DEF Ti meSour ce Ti meSensor { cyclelnterval 2.0 }

# Animate one full turn about Y axis:

DEF Animation Orientationlnterpolator {
key [ O . 33, . 66, 1.0 ]
keyvalue [ 01 00, 01021, 01042, 0100]

]
}
ROUTE i cker.touchTi me TO Ti neSource. start Ti ne
ROUTE Ti neSour ce. fracti on_changed TO Ani nati on. set_fraction
ROUTE Ani mati on. val ue_changed TO Xformrotation

Click hereto view this examplein a VRML browser.

220



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

D.13.3 Alarm clock

The second exampl e plays chimes once an hour:

#VRML V2.0 utf8

G oup {
children [
DEF Hour Ti meSensor {
| oop TRUE
cyclelnterval 3600.0 # 60*60 seconds == 1 hour
}
Sound {
source DEF Sounder AudioCdip {
url "click.wav" }
}
}
]
}

ROUTE Hour . cycl eTi ne TO Sounder. start Ti ne

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—
@®D.14 Shuttles and pendulums

Shuttles and pendulums are great building blocks for composing interesting animations. This shuttle trandates its
children back and forth along the X axis, from -1 to 1 (by default). The distance field can be used to change this
default. The pendulum rotates its children about the Z axis, from O to 3.14159 radians and back again (by default).
The maxAngle field can be used to change this default.

#VRML V2.0 utf8

PROTO Shuttle [

field SFTinme rate 1
field SFFl oat distance 1
field MFNode children [ ]

exposedField SFTinme startTime O
exposedField SFTime stopTine O
field SFBool | oop TRUE
1 {
DEF F Transform { children IS children }
DEF T Ti neSensor {
cyclelnterval IS rate
startTime |S startTinme
stopTinme IS stopTinme

loop IS |oop
}
DEF S Script {
field SFFI oat di stance IS distance

221



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

event Qut MrFVec3f position

url "javascript:

function initialize() {
/] constructor:setup interpolator,
posl = new SFVec3f (-distance, 0, 0);
pos2 = new SFVec3f (di stance, 0, 0);
position = new M~Vec3f (posl, pos2, posl);

H

}

DEF | Positionlnterpolator {

key [ 0, 0.5, 1]

keyvalue [ -1 00, 100, -100]
}

ROUTE T.fraction_changed TO |.set_fraction
RQUTE 1. val ue_changed TO F.set _transl ation
ROQUTE S. position TO I.set_keyVal ue

}

PROTO Pendul um [
field SFTine rate 1
field SFFl oat maxAngl e 3. 14159
field MFNode children [ ]
exposedField SFTinme startTime O
exposedField SFTinme stopTine O
field SFBool | oop TRUE

1 {

DEF F Transform { children IS children }
DEF T Ti meSensor {

cyclelnterval IS rate

startTime IS startTinme

stopTine IS stopTine

loop IS | oop

DEF S Script {
field SFFI oat maxAngl e IS maxAngl e
event Qut MFRotation rotation

url "javascript:
function initialize() {
/1 constructor:setup interpolator,

rotl = new SFRotation(0, O, 1, 0);
rot2 = new SFRotation(0, 0, 1, naxAngle/?2);
rot3 = new SFRotation(0, O, 1, naxAngle);

rotation = new MFRotation(rotl, rot2, rot3,
rot2, rotl);
b,

DEF | Oientationlnterpolator {
key [ 0, 0.25, 0.5, 0.75, 1]

keyvalue [ 0 0 1 O,
001157,
0 01 3.14,
001157,
0010]

222



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

}

ROUTE T.fraction_changed TO |.set_fraction
ROUTE | . val ue_changed TO F.set _rotation
ROUTE S.rotation TO |.set_keyVal ue

}

Transform {
translation -3 0 0
chil dren Pendul um {
rate 3
maxAngl e 6. 28
children Shape { geonetry Cylinder { height 5} }

}

Transform {
translation 3 0 0
children Shuttle {
rate 2
chil dren Shape { geonetry Sphere { } }

}

Click hereto view this examplein a VRML browser.

These nodes can be used to do a continuous animation when loop is TRUE. When loop is FALSE they can perform
a single cycle under control of the startTime and stopTime fields. The rate field controls the speed of the animation.
The children field holds the children to be animated.

\.IF!.I'I'II_HTL_@—
@D.15 Robot

This example is a simple implementation of a robot. This robot has very simple body parts a cube for his head, a
sphere for his body and cylinders for arms (he hovers so he has no feet!). He is something of a sentry--he walks
forward and walks back across a path. He does this whenever the viewer is near. This makes use of the Shuttle and
Pendulum of D.14.

#VRML V2.0 utf8

EXTERNPROTO Shuttle [

field SFTine rate
field SFFl oat di st ance
field MFNode chil dren

exposedField SFTime startTinme
exposedFi el d SFTine stopTine
field SFBool | oop

]
"exanpl eD. 14. w | #Shut t | e"

EXTERNPROTO Pendul um [

field SFTinme rate
field SFFl oat maxAngl e
field M-Node children

223



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

exposedField SFTime startTinme
exposedFi el d SFTine stopTine
field SFBool | oop

]
"exanpl eD. 14. wr | #Pendul unt

Vi ewpoi nt {
position 0 0 150
}

DEF Near ProximtySensor { size 200 200 200 }

DEF Wal k Shuttle {
stopTine 1
rate 10
di stance 20

children [
# The Robot
Transform {
rotation 0 1 0 1.57

children [
Shape {
appear ance DEF A Appear ance {
material Material {
diffuseColor 0 0.5 0.7
}
}

geonetry Box { } # head
}
Transform {
scale 1 51
translation 0 -5 0
chi l dren Shape {
appear ance USE A
geonetry Sphere { }
} # body
}
Transform {
rotation 0 1 0 1.57
translation 1.5 0 0

chil dren DEF Arm Pendul um {
stopTinme 1
rate 1
maxAngl e 0.52 # 30 degrees

children [
Transform {
translation 0 -3 0

chi l dren Shape {
appearance USE A
geonetry Cylinder ({
hei ght 4
radius 0.5

224



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

}

# duplicate armon other side and flip so
# it swings in opposition
Transform {

rotation 0 -1 0 1.57

translation -1.5 0 0O

children USE Arm

}

ROUTE Near.enterTine TO Wal k. start Ti ne
ROUTE Near.enterTine TO ArmstartTi me
ROUTE Near.exitTime TO Wal k. st opTi e
ROUTE Near.exitTime TO Arm stopTi nme

Click hereto view this examplein a VRML browser.

Move closer to therobot to start the animation.

\.IF!.I'I'II_HTL_@—
®D.16 Chopper

This example of a helicopter demonstrates how to do simple animation triggered by a TouchSensor. It uses an
EXTERNPROTO to include a Rotor node from the Internet which does the actua animation.

#VRML V2.0 utf8

EXTERNPROTO Rot or [
field SFTime rate
field MFNode children
exposedField SFTime startTinme
exposedFi el d SFTinme stopTine
]

"rotor.wl"

PROTO Chopper [
field SFTinme rotorSpeed 1
1 {

G oup {
children [
DEF Touch TouchSensor { } # CGotta get touch events
Inline { url "chopperbody. wl" }
DEF Top Rotor ({
# initially, the rotor should not spin
stopTine 1

225



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

rate 1S rotorSpeed
children Inline { url "chopperrotor.wl" }

}

DEF Rotor Script Script {
eventln SFTinme start O St opEngi ne
event Qut SFTi me startEngi ne
event Qut SFTi me st opEngi ne
field SFBool engi neStarted FALSE

url "javascript:
function startO St opEngi ne(val ue) {
/] start or stop engine:
if (!engineStarted) {
start Engi ne = val ue;
engi neStarted = TRUE;

}
el se {
st opEngi ne = val ue;
engi neStarted = FALSE;
}

b
}

ROUTE Touch. touchTime TO Rotor Scri pt. start O St opEngi ne
ROUTE Rotor Scri pt.startEngi ne TO Top. startTi ne
ROUTE Rot or Scri pt. st opEngi ne TO Top. st opTi e

}

Vi ewpoi nt { position 0 0 5}
DEF MyScene G oup {

children DEF M kesChopper Chopper { }
}

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—

@D.17 Guided tour

VRML provides control of the viewer’s camera through use of a script. Thisis useful for things such as guided tours,
merry-go-round rides, and transportation devices such as buses and elevators. These next two examples show a
couple of ways to use this feature.

Thisexample isasimple guided tour through the world. Upon entry, a guide orb hoversin front of the viewer. Click
on thisand atour through the world begins. The orb follows the user around on his tour. A ProximitySensor ensures
that the tour is started only if the user is close to the initiad starting point. Note that this is done without scripts
thanks to the touchTime output of the TouchSensor.

226



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

#VRML V2.0 utf8

G oup {
children [
Transform {
translation 0 -1 0

chi l dren Shape {
appear ance Appear ance {
material Material { }
}

geonetry Box { size 30 0.2 30 }
}

Transform {
translation -1 0 O

chi l dren Shape {
appear ance Appear ance {
material Material {
diffuseColor 0.5 0.8 0
}
}

geonetry Cone { }
}
}
Transform {
translation 1 0 0

chil dren Shape {
appear ance Appear ance {
material Material {
diffuseColor 0 0.2 0.7

}
}
geonetry Cylinder { }
}
}
DEF Cui deTransform Transform {
children [

DEF Tour Gui de Viewpoint { junmp FALSE },
DEF ProxSensor ProximtySensor { size 50 50 50 }
DEF Start Tour TouchSensor { },
Transform {
translation 0.6 0.4 8

chi l dren Shape {
appear ance Appear ance {
material Material {
diffuseColor 1 0.6 O
}
}

geonetry Sphere { radius 0.2 }
} # the guide orb

227



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

}

DEF Qui dePl Positionlnterpol ator {
key [ O, 0.2, 0.3, 0.5, 0.6, 0.8, 0.9, 1]
keyvalue [ 0 0 0, 0 O -5,
20-5 26 -15
-4 6 -15, -4 0 -5,
00-5 000

}
DEF QuideRI Orientationlnterpol ator {
key [ O, 0.2, 0.3, 0.5, 0.6, 0.8, 0.9, 1]
keyvalue [ 01 00, 010 O,
010112 010 3,
01035 0105,
0100, 0100

}

DEF TS Ti meSensor { cyclelnterval 30 } # 60 second tour

ROUTE ProxSensor.isActive TO Start Tour. set_enabl ed

ROUTE StartTour.touchTime TO TS.startTi ne

ROUTE TS. i sActive TO Tour Gui de. set _bi nd

ROUTE TS.fracti on_changed TO CGui dePl.set _fraction

ROQUTE TS.fracti on_changed TO CGui deRl.set _fraction

ROUTE Gui dePl . val ue_changed TO CGui deTransform set _transl ati on
ROUTE Gui deRl . val ue_changed TO Cui deTransform set_rotation

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—

@D .18 Elevator

Thisis another example of animating the camera by depicting an elevator to ease access to a multi-storey building.
For this example, a 2 storey building is shown and it is assumed that the elevator is aready at the ground floor. To
go up, the user just steps onto the elevator platform. A ProximitySensor fires and gdarts the eevator up
automatically. Additional features such as call buttons for outside the elevator, elevator doors, and floor selector
buttons could be added to make the elevator easier to use.

#VRML V2.0 utf8

Transform {
translation 0 0 -3.5

chil dren Shape {
appear ance Appear ance {
material Material {
diffuseColor 0 1 0
}

228



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

}
geonetry Cone { }

}

Transform {
translation 0 4 -3.5

chil dren Shape {
appear ance Appear ance {
material Material {
diffuseColor 1 0 0O
}
}

geonetry Cone { }

}

Transform {
translation 0 8 -3.5

chil dren Shape {
appear ance Appear ance {
material Material {
diffuseColor 0 0 1

}
}
geonetry Cone { }
}
}
G oup {
children [
DEF ETransform Transform {
children [
DEF EVi ewpoi nt Vi ewpoint { junp FALSE }
DEF EProximty ProximtySensor { size 2 55}
Transform {
translation 0 -1 0
chi l dren Shape {
appear ance Appear ance {
material Material { }
}
geonetry Box { size 2 0.2 5}
}
}
]
}
]
}
DEF El evator Pl Positionlnterpol ator {
key [ 0, 1]

keyValue [ 000, 08 0] # afloor is 4 neters high

DEF TS Ti meSensor { cyclelnterval 10 } # 10 second travel tine

229



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

ROUTE EProximty.enterTine TO TS.startTi ne

ROUTE TS. i sActive TO EVi ewpoi nt. set_bi nd

ROUTE TS.fracti on_changed TO El evatorPl.set _fraction

ROUTE El evat or Pl . val ue_changed TO ETransform set _transl ation

Click hereto view this examplein a VRML browser.

\.IF!.I'I'II_HTL_@—
®@D.19

Thisexampleillustrates the execution model example described in 4.10.3, Execution modd! .

#VRML V2.0 utf8
DEF TS TouchSensor { }
DEF Scriptl Script {
eventln SFTinme touchTi me
event Qut SFBool toScript?2
event Qut SFBool toScript3
eventQut SFString string
url "javascript:
function touchTime() {
toScript2 = TRUE;

}

function eventsProcessed() {
string = ' Scriptl. eventsProcessed’ ;
toScript3 = TRUE;

}e

}
DEF Script2 Script {

eventln SFBool fronScriptl
event Qut SFBool toScript4
eventQut SFString string
url "javascript:
function frontcriptl() {

}

function eventsProcessed() {
string = ' Script2. eventsProcessed’ ;
toScript4 = TRUE;

}e

}
DEF Script3 Script {

eventln SFBool fronScriptl
event Qut SFBool toScript5h
event Qut SFBool toScript6
eventQut SFString string
url "javascript:
function frontcriptl() {
toScript5 = TRUE;

}

function eventsProcessed() {
string = ' Script3.eventsProcessed’ ;
toScript6 = TRUE;

}e

230



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

DEF Script4 Script {
event | n SFBool fronfscript2
url "javascript:

function frontcript2() {

}

DEF Script5 Script {
event |l n SFBool fronfscript3
url "javascript:

function frontcript3() {

}

DEF Script6 Script {
eventln SFBool fronScript3
event Qut SFBool toScript?
eventQut SFString string
url "javascript:
function frontcript3() {
toScript7 = TRUE;

}
function eventsProcessed() {

string = ' Script6.eventsProcessed’ ;
pr

DEF Script7 Script {

eventln SFBool fronScript6

url "javascript:
function frontcript6() {
pe
}
ROUTE TS.touchTine TO Scri ptl.touchTi ne
ROUTE Scriptl.toScript2 TO Script2.fronScriptl
ROUTE Scriptl.toScript3 TO Script3.fronteriptl
ROUTE Script2.toScript4 TO Script4.fronScript?2
ROUTE Script3.toScript5 TO Script5.frontcript3
ROUTE Script3.toScript6 TO Script6.frontcript3
ROUTE Script6.toScript7 TO Script7.fronScript6

# Display the results
DEF Col | ector Script {
event Qut MFString string
eventln SFString fronBtring
url "javascript:
function initialize() { string[0] = ' Event Sequence:’; }
function fronttring(s) {
i = string.length;
string[i] =" "+i+) '+s+ occurred’;

po
}

Transform {
translation 0 2 O
chil dren Shape {
appear ance Appear ance {
material Material { diffuseColor 0 0.6 0 }
}

geonetry Sphere { }

231



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

}
Shape { geonetry DEF Result Text { } }

Vi ewpoint { position 7 -1 18 }

ROUTE Scriptl.string TO Collector.frontring
ROUTE Script2.string TO Collector.frontring
ROUTE Script3.string TO Collector.fronString
ROUTE Script6.string TO Collector.fronfString
ROUTE Col I ector.string TO Result.string

Click hereto view this examplein a VRML browser.

Clicking on the green sphere should display a text string for each eventsProcessed event. The two possible correct
displays for thisexample are:

Event Sequence:
1) Scriptl. eventsProcessed occurred
2) Script?2.eventsProcessed occurred
3) Script3.eventsProcessed occurred
4) Script6. eventsProcessed occurred

or

Event Sequence:
1) Script2.eventsProcessed occurred
2) Scriptl. eventsProcessed occurred
3) Script3.eventsProcessed occurred
4) Script6.eventsProcessed occurred

\.IF!.I'I'II_HTL_@—

232



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:199

Annex E

(informative)

Bibliography

7(E)

This annex contains the informative references in this part of ISO/IEC 14772. These are references to unoffici
standards or documents. All official standards are referenc&d\ormative references

| dentifier

Reference

DATA

"The Data: URL scheme," IETF Internet Draft working document.
http://ds.internic.net/internet-drafts/draft-masinter-url-data-03.txt

FOLE

Foley, van Dam, Feiner and Hughes, Computer Graphics Principles and Practice, 2nd E(
Addison Wesley, Reading, MA, 1990.
http://www.awl.com

GIF

"GIF™ - Graphics Interchange Format™" - A standard defining a mechanism for the storfi
transmission of raster-based graphics information, Version 89a, CompuServe.
http://www.w3.org/puBNWW/Graphics/GlF/spec-gif89a.txt

JAPI

"The Java™ Application Programming Interface, Volume 1 Core Packages" by James G
Frank Yellin and The Java Team, Addison Wesley, Reading Massachusetts, 1996, ISBN|(
63453-8.

http://java.sun.com/docs/books/apis/index.html

"The Java™ Application Programming Interface, Volume 2 Window Toolkit and Applets"
James Gosling, Frank Yellin and The Java Team, Addison Wesley, Reading Massachus¢
1996, ISBN 0-201-63459-7.

http://java.sun.com/docs/books/apis/index.html

L)

MIME

standards track protocol.
http://ds.internic.net/rfc/rfc2077.txt

OPEN

"The OpenGL Graphics System: A Specification (Version 1.1)," Silicon Graphics, Inc., 198
http://www.sgi.com/Technology/openGL/glspecl.1/glspec.html

PERL

"Programming Perl" by Larry Wall, Tom Christiansen and Randal L. Schwartz, O'Reilly &
Assodates, Sebastapol, CA, 1996.
http://www.oreilly.com/

SNDA

‘"Fundamentals of Computer Music", Dodge & Jerse, ShiBoeks, New York, 1985, p20-21.|

SNDB

Spatial Audio Work in the Multimedia Computing Group, Graphics, Visualization, and Us
Center, Georgia Institute of Technology, Atlanta, GA.
http://www.cc.gatech.edu/gvu/multimedia/spatsound/spatsound.html

"The Model Primary Content Type for Multipurpose Internet Mail Extensions,” IETF Interrje

tion,

ge and

sling,
D-201-

bility

233



ISO/IEC 14772-1:1997(E)

Copyright © The VRML Consortium Incorporated

"Universal Resource Name," IETF Internet standards track protocol.

URN http://ds.internic.net/rfc/rfc2141.txt
http://services.bunyip.com:8000/research/ietf/urn-ietf/
"Waveform Audio File Format, Multimedia Programming Interface and Data Specification
Issued by IBM & Microsoft, 1991.

WAV ftp://ftp.cwi.nl/pub/audio/RIFF-format

http://keck.ucsf.edu/~jwright/RIFF-format.html

http://www.seanet.com/HTML/Users/matts/riffmci/riffmci.htm

v1.0",

234

\.IF!.I'I'II_HTL_@—



Copyright © The VRML Consortium Incorporated ISO/IEC 14772-1:1997(E)

Annex F

(informative)

Recommendations for non-nor mative
extensions

\.IF!.I'I'II_HTL_@—

@F.1 Introduction

This annex describes recommended practice for non-normative extensions to ISO/IEC 14772.

F.1Introduction
F.2URNSs
F.3 Browser extensions

\.IF!.I'I'II_HTL_@—
®F.2 URNS

URNS are location-independent pointers to a file or to different representations of the same content. In most wa
URNSs can be used like URLs except that, when fetched, a smart browser should fetch them from the closest soul
URN resolution over the Internet has not yet been standardized. However, URNs may be used now as persist
unique identifiers for referenced entities such as files, EXTERNPROTOSs, and textures. General information ¢

URNSs is available &.[URN].

URNs may be assigned by anyone with a domain name. For example, if the company Foo owns foo.com, it m
allocate URNSs that begin with "urn:inet:foo.com:". An example of such usage is

"urn:inet:foo.com:texture:wood001".

See the draft specification referencediflURN] for a description of the legal URN syntax.

To reference a texture, EXTERNPROTO, or other file by a URN, the URN is included uml thiedd of another
node. For example:

| mgeTexture {
url [ "http://ww.foo.conltextures/woodbl ock_floor.gif",
"urn:inet:foo.comtextures: wod001" ]

}

specifies a URL file as the first choice and a URN as the second choice.

235



ISO/IEC 14772-1:1997(E) Copyright © The VRML Consortium Incorporated

\.IF!.I'I'II_HTL_@—

@®@F .3 Browser extensions

Browsers that wish to add functionality beyond the capabilities of ISO/IEC 14772 can do so by pretdiyges

or external prototypesif the new node cannot be expressed using the prototyping mechanism (i.e., it cannot be
expressed in the form of a VRML scene graph), it can be defined as an external prototype with a uniqgue URN
specification. Authors who use the extended functionality may provide multiple, alternative URLs or URNs to
represent content to ensure it is viewable on all browsers.

For example, suppose a browser wants to create a native Torus geometry node implementation:

EXTERNPROTO Torus [ field SFFloat bigR field SFFloat smal | R ]
["urn:inet:browser.comlibrary: Torus",
"http://.../proto_torus.wl" ]

This browser will recognize the URN and use the URN resource's own private implementation of the Torus node.
Other browsers may not recognize the URN, and skip to the next entry in the URL list and search for the specified
prototype file. If no URLs are found, the Torus is assumed to be an empty node.

The prototype name "Torus" in the above example has no meaning whatsoever. The URN/URL uniquely and
precisely defines the name/location of the node implementation. The prototype name is strictly a convention chosen
by the author and shall not be interpreted in any semantic manner. The following example uses both "Ring" and
"Donut” to name the torus node. However, the URN/URL pairn" browser.com i brary: Tor us,
http://.../proto_torus.wl " specifies the actual definitions of the Torus node:

#VRML V2.0 utf8
EXTERNPROTO Ring [field SFFl oat bigR field SFFloat smal IR ]

["urn:browser.comlibrary: Torus", "http://.../proto_torus.wl" ]
EXTERNPROTO Donut [field SFFl oat bigR, field SFFl oat smal IR ]
["urn:browser.comlibrary: Torus", "http://.../proto_torus.wl" ]
Transform{ ... children Shape { geonetry Ring { } } }
Transform{ ... children Shape { geonetry Donut { } } }
\.IF!.I'I'II_HTL_@—

236



